Lipoprotein modulators relevant to certain cardiovascular risk factors in diabetes mellitus and hyperlipidaemia

By

Nahla Nabil Mohamed Younis
Assistant lecturer of biochemistry,
Biochemistry department,
Faculty of Pharmacy,
Zagazig University

A thesis submitted in the fulfillment of the requirements for the award of the degree of Doctor of Philosophy

(Biochemistry)

Faculty of Pharmacy
Zagazig University
2008

Supervisors

Professor Mohamed Mahmoud El-Seweidy

Professor of Biochemistry, Faculty of Pharmacy, Zagazig University

Professor Paul Durrington

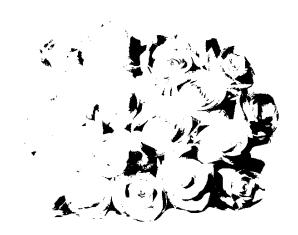
Professor of medicine Division of cardiovascular and endocrine sciences School of Clinical and Laboratory Sciences Manchester University

Professor Sousou Ibrahim Ali

Professor of Biochemistry, Faculty of Pharmacy, Zagazig University

بيِّنْ إِنْ الْخَرِّ الْخَرِيْ

قال تعالى


(وَقُلْ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَيُنَبِّئُكُمْ بِمَا كُنتُمْ تَعْمَلُونَ)

(التوبة-١٠٥)

DEDICATION

I wish to dedicate this thesis to

- The soul of my mother.
- My father who has supported me all the way since the beginning of my studies
- Also, this thesis is dedicated to my husband who has been a great source of motivation and inspiration.
- My brother Ahmad and my sister Salwa, who believed in me and my ability to achieve my ambitions.

Nahla Younis

TABLE OF CONTENTS

	NOLEDGEMENTS	I
LIST	OF ABBREVIATIONS	II
LIST	OF FIGURES	Π
LIST	OF TABLES	IV
Chapt	er 1: Introduction and aim of the work	
1.1 Ôr	iginal hypotheses	1
1.2 Ai	m of the work	2
Chapt	er 2: Review of literature	
2.1 Pla	sma lipoproteins: definition and classification	3
2.2 Lip	poprotein metabolism	5
2.3 Hy	perlipidaemia	13
	abetes mellitus	20
	Types of diabetes	20
2.4.2 I	Lipid abnormalities in type 2 diabetes and associated vascular diseases	24
	n-enzymatic glycation	29
	Chemistry of non-enzymatic glycation	29
	Advanced glycation end products	30
	Glycation of LDL	30
	Kinetic studies of native and glycated LDL	32
	Glycated LDL and foam cell formation	33
	Human acute monocytic leukaemia cell line (THP-1)	34
	Relationship of LDL glycation to oxidation	35
	Glycated LDL atherogenesity	36
	n vitro glycation of LDL	37
	Therapeutic interventions to decrease glycLDL	39
	T	
Chapt	er 3: Material and methods	
3.	Material and methods	41
3.1	Subjects	41
3.1.1	The distribution of glycated apoB (in vivo)	41
3.1.2	The susceptibility of LDL to non-enzymatic glycation (<i>in vitro</i>)	42
3.1.3	The effect of HDL on LDL non-enzymatic glycation (in vitro)	42
3.1.4	Glycated LDL uptake by cultured macrophage	43
3.2	Sampling.	43
3.3	Experimental design	43
3.3.1	The distribution of glycated apoB (in vivo)	43
3.3.2	The susceptibility of LDL to non-enzymatic glycation (<i>in vitro</i>)	44
3.3.3	The effect of HDL on LDL non-enzymatic glycation (<i>in vitro</i>)	44
3.3.4	Glycated LDL uptake by cultured macrophage.	44
3.4	Materials	45
3.5	General methods.	45
3.5.1	Blood glucose	45
3.5.2	Lipids and lipoproteins.	46
	Total abalastaral	46

3.5.2.2	Triglyceride	47
	High density lipoprotein-cholesterol	48
3.5.2.4	Low density lipoprotein-cholesterol	49
	Apolipoprotein B and A-I	50
3.5.3	Serum paraoxonase-1 activity (PON-1)	51
3.5.4	Lactate dehydrogenase activity (LDH)	52
3.6	The distribution of glycated apoB in apoB-containing lipoproteins in vivo	53
3.6.1	Lipoprotein isolation.	53
3.6.2	Calculating the percent of glycation in different lipoprotein subfractions	54
3.6.3	Quantification for glycated LDL	55
3.7 Th	e susceptibility of LDL and its subclasses to glycation (in vitro)	58
3.7.1	Isolation of LDL and its subclasses	58
3.7.2	Determination of protein content.	60
3.7.3	In vitro lipoprotein glycation	61
3.7.4	<i>m</i> -Aminophenylboronate affinity column chromatography	62
3.7.5	In house ELISA method for the quantitation of apoB100	64
3.7.6	Agarose gel electrophoresis.	67
3.7.7	Measurement of lipid peroxides formed during the <i>in vitro</i> glycation	68
3.7.8	Measurement of free amino groups in modified lipoproteins	69
	e effect of HDL on LDL in vitro non-enzymatic glycation	71
	Lipoproteins isolation	71
3.8.2	In vitro non-enzymatic glycation of LDL in the presence of HDL	72
3.8.3	The percent of <i>in vitro</i> induced glycation	72
	Measurement of the amount of lipid peroxides	72
3.8.5	Measurement of the free amino groups	73
3.8.6	Measurement of the electrophoretic mobility	73
3.9 Gly	cated LDL uptake by cultured macrophages	74
3.9.1	Tissue culture materials.	74
3.9.1.1	Equipments and disposables	74
	Media and materials	74
3.9.2	THP-1 cell line.	75
	Cell culture	75
3.9.2.2	Cell splitting	75
	Cell counting	75
	THP-1 cells differentiation into macrophages	76
	Preparation of LPDS	76
3.9.4	Glycated LDL loading to cultured macrophages	77
3.9.5	Quantification of foam cells	77
3.9.6	Cell viability	77
	Lactate dehydrogenase activity	77
3.9.6b	Cell protein	78
3.9.7	Macrophage lipid uptake	79
3.9.8	Visualisation of the formed foam cells	80
3.10	Statistical analyses	81

Chapter 4: Results	
4. Results	
4.1 The distribution of apoB and glycated apoB in different apoB-containing lipoproteins and LDL sub-fractions (<i>in vivo</i>)	82
4.2 The susceptibility of LDL and its subclasses to non-enzymatic glycation (in vitro)	
4.3 Effect of HDL on LDL non-enzymatic glycation (in vitro)	94
4.4 Glycated LDL uptake by cultured macrophage	130 138
Chapter 5: Discussion	
5. Discussion	
5.1 The distribution of apoB and glycated apoB in different apoB-containing lipoprotein and LDL sub-fractions <i>in vivo</i>	
5.2 The susceptibility of LDL and its subclasses to non-enzymatic glycation (<i>in vitro</i>)	143
5.3 Effect of HDL on LDL non-enzymatic glycation (<i>in vitro</i>)	147
5.4 Glycated LDL uptake by cultured macrophage	152 154
Chapter 6: Summary and conclusions	
	157
Chapter 7: References	
•	162
الملخص العربي	
	192

ACKNOWLEDGEMENTS

I would like to formally thank the following people for their role in making this study possible:

Professor Mohamed M El-Seweidy: Professor of Biochemistry, Zagazig University for his kind supervision and support since I started my postgraduate studies.

Professor Paul N Durrington Professor of medicine, Manchester University for his valuable supervision, guidance and discussions throughout my years in Manchester.

Dr Sousou I Ali Professor of Biochemistry, Zagazig University for her supervision, valuable advice and encouragement during the progress of this work

Dr Valentine Charlton-Menys, Research Fellow, Clinical and Laboratory Sciences, Manchester University for his expert practical supervision and sincere effort to facilitate the difficulties during the progress of that work.

Phillip Pemberton, clinical research, Manchester Royal Infirmary for his kind assistance in setting and development of the apoB ELISA method used in that study.

Dr Handrean Soran, consultant in the Manchester Royal Infirmary, for his appreciated contributions in the recruitment of patients and volunteers.

People from the lipoprotein research group Jelena Chobatova, Jesica Knox and Ashley Moorhouse for their kind help in processing samples by auto-analyzer.

Of course, I'll not forget the **Egyptian government** that sponsored this work financially (one of The Egyptian Ministry of Higher Education Channel mission schemes granted to faculty of Pharmacy, Zagazig University).

LIST OF ABBREVIATIONS

AGEs Advanced glycation end products

ApoA-I Apolipoprotein A-I
ApoB100 Apolipoprotein B100
ApoE Apolipoprotein E
BCA Bicinchoninic acid
BMI Body mass index

BSA Bovine serum albumin
CE Cholesterol esters

CETP Cholesteryl ester transfer protein

CHD Coronary heart disease

DM-LLT Type 2 diabetes patients who were receiving lipid lowering treatment

DM-noLLT Type2 diabetes patients who were not receiving lipid lowering treatment

DPBS Dulbeccos phosphate buffered saline

EDTA Ethylenediamine tertracetic acid

ELISA Enzyme-linked immunosorbant assay

ER Endoplasmic reticulum

FCS Foetal calf serum

FH Familial hypercholesterolaemia

GA Glycolaldehyde

GDM Gestational diabetes mellitus
GlycLDL Glycated low density lipoproteins

HDL High density lipoproteins

HDL-C HDL-cholesterol

HL Hyperlipoproteinaemia

HL-LLT Hyperlipidaemic patients who were receiving lipid lowering treatment
HL-noLLT Hyperlipidaemic patients who were not receiving lipid lowering treatment

IDL Intermediate density lipoproteinsLCAT Lecithin-cholesterol acyl transferase

LDL Low density lipoproteins LDL1, 2 LDL subclasses 1 and 2

LDL-3 LDL subclass 3
LDL-C LDL-cholesterol
LDL-R LDL- receptors

LPDS Lipoprotein deficient serum

LPL Lipoprotein lipase

LPO Lipid peroxidation/peroxides

M Mean

MG Methylglyoxal

MODY Maturity-onset diabetes in young
MTP Microsomal transfer protein

NAD⁺ Nicotinamide adenine dinucleotide NADH Nicotinamide adenine dinucleotide-H

NEAA Non-essential amino acids NEFA Non-esterified fatty acids

Ox-LDL Oxidized LDL

PBS Phosphate-buffered saline

PKC Protein kinase C

PMA Phorbol 12-myristate 13- acetate

PON-1 Paraoxonase-1

PVD Peripheral vascular disease

REM Relative electrophoretic mobility

SEM Standard error of mean

t.LDL Total LDL
TG Triglyceride

TNBS Trinitrobenzenesulphonic acid TNF- α Tumour necrosis factor-alpha

TNP Trinitrophenyl

VLDL Very low density lipoproteins

ω-3 PUFA Omega-3 polyunsaturated fatty acids

WHO World health organisation

LIST OF FIGURES

Figure 2.1	Generalized structure of plasma lipoproteins	3
Figure 2.2	The cellular pathway of the LDL receptor	11
Figure 2.3	Lipoprotein metabolism	12
Figure 2.4	Metabolic basis of an atherogenic lipoprotein phenotype in Type 2 diabetes: role of CETP	27
Figure 2.5	Non-enzymatic glycation of proteins	29
Figure 2.6	Turnover of native LDL and glycLDL in 4 human subjects	33
Figure 3.1	Standard curve for glycated apolipoprotein B100 (Glycacor kit)	58
Figure 3.2	Total protein standard curve using BSA as standard (BCA method; r=0.999)	61
Figure 3.3	Standard curve for apolipoprotein B100	66
Figure 3.4	Standard curve for l-leucine (r=0.999)	70
Figure 3.5	Standard curve for free cholesterol (r=0.999)	80
Figure 4.1.1	Percentage distribution of apoB in VLDL, IDL and t.LDL isolated from (a) healthy volunteers, (b) DM-noLLT, (c) DM-LLT, (d) HL-noLLT and (e) HL-LLT.	85
Figure 4.1.2	Percentage distribution of apoB in LDL1, 2 and LDL3 isolated from (a) healthy volunteers, (b) DM-noLLT, (c) DM-LLT, (d) HL-noLLT and (e) HL-LLT.	87
Figure 4.1.3	Percentage distribution of glycated apoB in VLDL, IDL and t.LDL isolated from (a) healthy volunteers, (b) DM-noLLT, (c) DM-LLT, (d) HL-noLLT and (e) HL-LLT.	90
Figure 4.1.4	Percentage distribution of glycated apoB in LDL1, 2 and LDL3 isolated from (a) healthy controls, (b) DM-noLLT, (c) DM-LLT, (d) HL-noLLT and (e) HL-LLT.	92
Figure 4.1.5	Correlation between glycated apoB in plasma and (a) plasma apoB, (b) glycated apoB in LDL, (c) glycated apoB in LDL3, (d) fasting glucose and (e) fasting glucose (diabetic groups).	93

Figure 4.2.1	Percentage of glycated apoB to total apoB in t.LDL isolated from healthy controls and incubated for 7 days at 37°C with 30, 50 and 80 mmol/l glucose and without glucose	96
Figure 4.2.2	Percentage of glycated apoB to total apoB in t.LDL isolated from DM-noLLT and incubated for 7 days at 37°C with 30, 50 and 80 mmol/l glucose and without glucose	97
Figure 4.2.3	Percentage of glycated apoB to total apoB in t.LDL isolated from DM-LLT and incubated for 7 days at 37°C with 30, 50 and 80 mmol/l glucose and without glucose	98
Figure 4.2.4	Percentage of glycated apoB to total apoB in t.LDL isolated from HL-noLLT and incubated for 7 days at 37°C with 30, 50 and 80 mmol/l glucose and without glucose	99
Figure 4.2.5	Percentage of glycated apoB to total apoB in t.LDL isolated from HL-LLT and incubated for 7 days at 37°C with 30, 50 and 80 mmol/l glucose and without glucose	100
Figure 4.2.6	Amount of lipid peroxides (nmol/ml) formed during t.LDL, isolated from healthy controls, <i>in-vitro</i> glycation with 30, 50 and 80 mmol/l glucose and without glucose for 7 days at 37°C	102
Figure 4.2.7	Amount of lipid peroxides (nmol/ml) formed during t.LDL, isolated from DM-noLLT, <i>in-vitro</i> glycation with 30, 50 and 80 mmol/l glucose and without glucose for 7 days at 37°C	103
Figure 4.2.8	Amount of lipid peroxides (nmol/ml) formed during t.LDL, isolated from DM-LLT, <i>in-vitro</i> glycation with 30, 50 and 80 mmol/l glucose and without glucose for 7 days at 37°C	104
Figure 4.2.9	Amount of lipid peroxides (nmol/ml) formed during t.LDL, isolated from HL-noLLT, <i>in-vitro</i> glycation with 30, 50 and 80 mmol/l glucose and without glucose for 7 days at 37°C	104
Figure 4.2.10	Amount of lipid peroxides (nmol/ml) formed during t.LDL, isolated from HL-LLT, <i>in-vitro</i> glycation with 30, 50 and 80 mmol/l glucose and without glucose for 7 days at 37°C	105
Figure 4.2.11	Agarose gel electrophoresis (representative gel of 5) showing native LDL (lane 1), LDL modified for 1, 2, 3, 5, 6 and 7 days , respectively with 30 mmol/l glucose (lane 2-7), 50 mmol/l glucose (lane 8-13) and 80 mmol/l glucose (lane 14-19)	107

Figure 4.2.12	Incubation time and glucose concentration effects on REM values for t.LDL incubated for 7 days at 37°C with 30, 50 and 80 mmol/l glucose relative to incubation controls.	107
Figure 4.2.13	REM values for t.LDL incubated for 7 days at 37°C with 80 mmol/l glucose relative to the corresponding incubation controls in healthy volunteers, diabetic and hyperlipidaemic patients either on or not on lipid lowering regimen.	108
Figure 4.2.14	Free amino group content (mg/ml) in t.LDL isolated from healthy controls and <i>in-vitro</i> glycated for 7 days with 30, 50 and 80 mmol/l glucose at 37°C.	109
Figure 4.2.15	Free amino group content (mg/ml) in t.LDL isolated from (a) DM-noLLT and (b) DM-LLT and <i>in-vitro</i> glycated for 7 days with 30, 50 and 80 mmol/l glucose at 37°C.	110
Figure 4.2.16	Free amino group content (mg/ml) in t.LDL isolated from (a) HL-noLLT and (b) HL-LLT and <i>in-vitro</i> glycated for 7 days with 30, 50 and 80 mmol/l glucose at 37°C.	110
Figure 4.2.17	Percentage of apoB glycation in (a) LDL1, 2 and (b) LDL3 isolated from healthy controls and incubated for 7 days at 37°C with glucose and without glucose and (c) the percentage increase in glycation from corresponding baseline values in LDL1, 2 and LDL3.	114
Figure 4.2.18	Percentage of apoB glycation in (a) LDL1, 2 and (b) LDL3 isolated from DM-noLLT and incubated for 7 days at 37°C with glucose at concentrations of 30, 50 and 80 mmol/l and without glucose and (c) the percentage increase in glycation from corresponding base line values in LDL1, 2 and LDL3.	115
Figure 4.2.19	Percentage of apoB glycation in (a) LDL1, 2 and (b) LDL3 isolated from DM-LLT and incubated for 7 days at 37°C with glucose at concentrations of 30, 50 and 80 mmol/l and without glucose and (c) the percentage increase in glycation from corresponding baseline values in LDL1, 2 and LDL3.	117
Figure 4.2.20	Percentage of apoB glycation in (a) LDL1, 2 and (b) LDL3 isolated from HL-noLLT and incubated for 7 days at 37°C with glucose at concentrations of 30, 50 and 80 mmol/l and without glucose and (c) the percentage increases in glycation from corresponding baseline values in LDL1, 2 and LDL3.	118

Figure 4.2.21	Percentage of apoB glycation in (a) LDL1, 2 and (b) LDL3 isolated from HL-LLT and incubated for 7 days at 37°C with glucose at concentrations of 30, 50 and 80 mmol/l and without glucose and (c) the percentage increase in glycation from corresponding baseline values in LDL1, 2 and LDL3.	120
Figure 4.2.22	Amount of lipid peroxides (nmol/ml) formed during <i>in-vitro</i> glycation of (a) LDL1, 2 and (b) LDL3 isolated from healthy volunteers.	121
Figure 4.2.23	Amount of lipid peroxides (nmol/ml) formed during <i>in-vitro</i> glycation of (a) LDL1, 2 and (b) LDL3 isolated from DM-noLLT.	122
Figure 4.2.24	Amount of lipid peroxides (nmol/ml) formed during <i>in-vitro</i> glycation of (a) LDL1, 2 and (b) LDL3 isolated from DM-LLT.	123
Figure 4.2.25	Amount of lipid peroxides (nmol/ml) formed during <i>in-vitro</i> glycation of (a) LDL1, 2 and (b) LDL3 isolated from HL-noLLT.	123
Figure 4.2.26	Amount of lipid peroxides (nmol/ml) formed during <i>in-vitro</i> glycation of (a) LDL1, 2 and (b) LDL3 isolated from HL-LLT.	124
Figure 4.2.27	REM values for LDL1, 2 and LDL3 incubated for 7 days at 37°C with 80 mmol/l glucose in healthy, diabetic and hyperlipidaemic subjects who were receiving or who were not receiving lipid lowering medication.	126
Figure 4.3.1	Glycated apoB 100 concentrations (mg/dl) in t.LDL <i>in vitro</i> glycated with 30, 50 and 80 mmol/l glucose at 37°C for 7 days in the presence and absence of (a) HDL isolated from chicken serum, no PON-1 activity, (b) autologous HDL isolated from participants with low serum PON-1 activity and (c) autologous HDL isolated from participants with high serum PON-1 activity.	133
Figure 4.3.2	Amount of lipid peroxides (nmol/ml) in LDL <i>in vitro</i> glycated with 30, 50 and 80 mmol/l glucose at 37°C for 7 days in the presence and absence of (a) HDL isolated from chicken serum, no PON-1 activity, (b) autologous HDL isolated from participants with low serum PON-1 activity and (c) autologous HDL isolated from participants with high serum PON-1 activity.	135
Figure 4.3.3	REM values for LDL <i>in vitro</i> glycated with glucose in the presence and absence of HDL isolated from chicken serum (no PON-1 activity), autologous HDL isolated from participants with low and high serum PON-1 activity.	136

Figure 4.3.4	Percentage decrease in free amino groups in LDL <i>in vitro</i> glycated with 30, 50 and 80 mmol/l glucose at 37°C for 7 days in the presence and absence of (a) HDL isolated from chicken serum, no PON-1 activity, (b) autologous HDL isolated from participants with low serum PON-1 activity and (c) autologous HDL isolated from participants with high serum PON-1 activity.	137
Figure 4.4.1	Cell viability of macrophages exposed to native and glycated LDLs and of control cells incubated in RPMI-1640 with 10 % LPDS.	140
Figure 4.4.2	Protein concentrations ($\mu g/ml$) in cell lysate of macrophages exposed to native and glycated LDLs and of control cells incubated in RPMI-1640 with 10 % LPDS.	140
Figure 4.4.3	Free cholesterol, cholesterol esters and total cholesterol (μ mol/mg cell protein) in cell lysate of THP-1 macrophage exposed to native and glycated LDL.	141
Figure 4.4.4	Phase micrographs of (a) THP-1 cells in RPMI-1 media supplemented with L-glutamine and 10 % heat inactivated foetal calf serum and (b) morphologically mature macrophage formed by incubating THP-1 cells with 200 nmol/1 PMA for 72 hours in serum free RPMI-1640 media, viewed by Olympus CKX41inverted microscope (magnification 200x).	142
Figure 4.4.5	Phase micrographs of THP-1 differentiated macrophage incubated with (a) LPDS, (b) native LDL and (c) glycated LDL. All cells were stained by oil red O to visualise LDL uptake and foam cell formation and viewed by Olympus CKX41inverted microscope (magnification 100x).	142