

Ain Shams University Faculty of Engineering Department of Structural Engineering

Slope Stability of Jointed Rock Masses

BY

Mohamed Youssef Abd El-Latif

B.Sc, Civil Engineering "Structural" (2005) Ain Shams University - Faculty of Engineering

THESIS

Submitted in partial fulfillment of the requirements for Degree of Doctor of Philosophy in Civil Engineering Structural Engineering Department (Geotechnical Engineering)

Supervised By

Prof. Dr. Abdel Monem Ahmed Moussa

Professor of Geotechnical Engineering Structural Engineering Department Ain Shams University - Faculty of Engineering

Dr. Ashraf M. Hefny

Associate Professor of Geotechnical Engineering Structural Engineering Department Ain Shams University - Faculty of Engineering

Information About The Researcher

Name : Mohamed Youssef Abd El-Latif

Date of Birth: June 23, 1983

Place of Birth : Alexandria, Egypt.

Qualification : B.Sc, Civil Engineering "Structural Department"

Faculty of Engineering- Ain Shams University

(2005)

M.Sc., Civil Engineering "Structural Department"

Faculty of Engineering- Ain Shams University

(2008)

Present Job : Teacher Asistant at Structural engineering

Department, Faculty of Engineering- Ain Shams

University

APPROVAL SHEET

Name of Researcher: Mohamed Youssef Abd El-Latif

Title of Thesis: "Slope Stability of Jointed Rock Masses"

Degree : Degree of Doctor of Philosophy in Civil Engineering

(Structural Engineering Department)

EXAMINERS COMMITTEE

me, Title & Affiliation:	<u>Signature</u>
Prof. Dr. Mohamed Hesham El-Naggar	
Prof. of Geotechnical Engineering	
Faculty of Engineering, Western Ontario University	
Prof. Dr. Ezzat Abdel Fattah Emira	
Prof. of Geotechnical Engineering	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Abdel-Monem Moussa	
Prof. of Geotechnical Engineering	
Faculty of Engineering, Ain Shams University	

STATEMENT

This dissertation is submitted to Ain Shams University for the

degree of doctor of philosophy in civil engineering.

The work included in this thesis was carried out by the author in

the Department of structural Engineering, Ain Shams University

from 2008 to 2012.

No part of this thesis has been submitted for a degree or for

qualification at any other university or situation.

Name

: Mohamed Youssef Abd El Latif

Signature:

Date

: / / 2012

ACKNOWLEDGMENT

The present work was conducted out at the Department of Structural Engineering, Faculty of Engineering, Ain Shams University.

It was completed under the supervision of Prof. Dr. Abdel Monem Moussa, Prof. of Geotechnical Engineering and Dr. Eng. Ashraf Hefny, Associate Professor of Geotechnical Engineering, whom I have the pleasure of working under their supervision. I express sincere appreciation for their helpful, generous advice and guidance throughout the period of this research.

I thank my supervisors who have been very instrumental in enriching my thesis. Appreciably I thank them so much for accepting me to be their student and for providing me with the guiding hand of Great Spirit in carrying out this research.

I would like to thank the soil mechanics laboratory staff for their valuable helps during this period. A debt of gratitude is to all people who in one way or other contributed ideas directly or indirectly. Because it would end up into long list to mention all the people I am indebted to, I gratefully thank all of them collectively.

Last, I would like to express my deep feelings towards each member of my family to whom I owe every success in my life. My cordial thanks spread out to my father and mother for there love, support and guidance throughout my life and for inculcating in me the passion for knowledge.

Mohamed Youssef

June, 2012

Structural Engineering Department

Abstract of the Ph.D. Thesis submitted by:

Mohamed Youssef Abdel-Latif

Title of Thesis:

Slope Stability of Jointed Rock Masses

Supervisors: Prof. Dr. Abdel Monem Ahmed Moussa

Dr. Ashraf Mohamed Hefny

Registration date: 15/12/2008

Examination date:

Abstract

The mechanical behavior of jointed rock masses is determined by the properties of the rock matrix, geometry and properties of discontinuities. Joints and other geologic structures often increase significantly the deformability, and reduce the strength of the systems. The main problem with natural slopes, that its failure is unpredictable. The study of discontinuities in rock slopes is a very important factor for its stability and also for the safety of near habitants. Mokattam plateau slopes in Egypt are an example for hazard rock slopes surrounded by high population densities. Presence of intercalated shale layer in the Mokattam slopes causes a lot of instability problems due to shale softening and degradation when subjected to humidity or leakage resulting in many fatal accidents in the last years due to rock fall on humans and buildings. Most of the last stability researches use continuum or empirical approaches (ex; finite element programs). This approach is acceptable in the case of heavily jointed rock masses. But in reality, the rock mass is controlled by movement of joint-bounded blocks and/or intact rocks deformation, simulation of large displacements and large rotations is difficult with this method. Numerical modeling of jointed rock slopes using discontinuum distinct element techniques has proved to be the most reliable technique in these analyses.

The main objective of the present thesis is to investigate the behavior and stability of jointed rock slopes using discontinuum distinct element code (UDEC). This was conducted by designing and programming an analyzed model to analyze the stability of this complicated rock slopes. The designed model was applied on the Mokattam upper plateau slope and the model results were compared with the available field displacement readings to ensure the accuracy of the designed model in addition with taking into account the softening of shale layer on five steps. The developed model results agree well with the field results. Accordingly, an extensive parametric study was carried out to determine the effect of five important joint properties on the stability of rock slopes (which are joint shear stiffness, joint normal stiffness, joint friction, joint cohesion and joint tension) also, the effect of shale layer properties and its inclination. Design and guideline values were represented for these parameters which will benefit researchers in their future studies and analyses. Also, an economic mean of protection was suggested to protect the population surrounding the upper Mokattam plateau slopes by determining the safe catchment length below these slopes using another developed analysis model which simulate a practical rock fall for one of these slopes. Accordingly, the actual evacuation areas could be determined and implemented by state institutions.

Finally, this research project has helped to identify the jointed rock slopes behaviour and its associated problems in the Mokattam area and to increase the sensitivity of the proposed measures, which can help in mitigating the slope failure reasons and to achieve security of the population.

Keywords: Rock masses; Joints; Shale; Displacement; Shear stiffness; UDEC; Stability

TABLE OF CONTENTS

Title		Page
TABLE	OF CONTENTS	I
LIST OF	FIGURES	VII
LIST OF	TABLES	XIX
NOTAT	IONS AND SYMBOLS	XXIII
CHAPTI	ER 1 INTRODUCTION	1
1.1	General	1
1.2	Objectives of This Research	3
1.3	Organization of the Present Work	4
CHAPTI	ER 2 LITERATURE REVIEW	6
2.1	General	6
2.2	Introduction To Rock Slopes	6
2.3	Structural geology and strength of Jointed Slopes	7
2.3.1	Importance of geological investigations	7
2.3.2	Discontinuities Types and Joints Orientation	7
2.3.3	Parameters Defining Rock Mass Characteristics	9
2.3.4	Rock mass classification	14
2.3.5	Shear Strength of Infilled Discontinuities	15
2.3.6	Shear Strength of Filled Discontinuities	21
2.3.7	Ground Water Effect on Jointed Rock Masses	26
2.4	Types of Rock Slopes Failure	26
2.5	Methods of Analysis of Slope Stability	29

3.2	2	Introduction On Mokattam Plateau	58
3.1	1	General	58
	,	SLOPES	58
CI	HAPTE	R 3 RECENT CASE STUDIES ON MOKATTAM PLATEAU	
2.6	6	Protection and treatment to Rock Slopes	54
	2.5.3	Comparison between Numerical and Conventional Methods	52
	2.5.2.3	Hybrid/Coupled Modelling	51
	b)	Discrete Element Method	49
	a)	Distinct Element Method	48
	2.5.2.2	Discontinuum Modelling	48
	c)	Boundary Element Method	46
	b)	Finite Difference Method	43
	a)	Finite Element Method	42
	2.5.2.1	Continuum Modelling	42
	2.5.2	Numerical Methods	40
	2.5.1.8	Rockfall Simulation	37
	2.5.1.7	Block Models Theory	36
	2.5.1.6	Physical Modeling	35
	2.5.1.5	Probabilistic Methods	33
	2.5.1.4	Limit analysis and Limit Equilibrium Methods	31
	2.5.1.3	Slope Stability Charts	31
	2.5.1.2	Stereographic and Kinematic Methods	31
	2.5.1.1	Empirical and Analogue Approaches	30
	2.5.1	Conventional Methods of Rock Slope Analysis	30

3.3	3	Topography and Geology of Mokattam Plateau	59
3.4 Geotechnical Properties		62	
3.5	5	Previous studies on Mokattum Slopes and Failures	66
3.6	5	Recent 2008 Failure in Mokattam plateau:	74
3.7	7	Factors Affecting Mokattam slopes stability:	76
CI	HAPTE	R 4 UDEC MODELLING AND SENSITIVITY STUDY	77
4. 1	L	General	77
4.2	2	Universal Distinct Element Code (UDEC) program	77
	4.2.1	Numerical Formulation	78
	4.2.2	Block Constitutive models	78
	4.2.3	Joint Material Models	82
	4.2.4	Fields of Application	83
	4.2.5	Validation of UDEC	83
4. 3	3	Effect of Model Size on UDEC Results	84
	4.3.1	Introduction	84
	4.3.2	Model Shape	86
	4.3.3	Input parameters	88
	4.3.4	Numerical Results	89
	4.3.4.1	Effect of Model Size on Maximum Displacement	90
	a) Effec	ct of Slope Height (H) on Maximum Displacement Vectors	90
	b) Effec	ct of Bedrock Height (Y) on Maximum Displacement Vectors	90
	c) Effec	ct of Top Horizontal distance (Hz1) on Maximum Displacement Vectors	93
	d) Effec	ct of Bottom Horizontal distance (Hz2) on Maximum Displacement Vector	ors 93

	4.3.4.2	2 Sufficient Damping Lengths for Horizontal Displacement Contours	96
	a) Eff	Fect of Bottom Horizontal distance (Hz2) on Sufficient Damping Lengths	96
	b) Effe	ect of Top Horizontal distance (Hz1) on Sufficient Damping Lengths	96
	4.3.5	Conclusions	99
	CI	HAPTER 5 MODELLING OF MOKATTAM UPPER PLATEAU STABILITY "CASE STUDY"	100
5. .	1	General	100
5. <i>i</i>	2	Shale Softening Case Study (Mokattam 2002)	100
	5.2.1	Data of Case Study	100
	5.2.2	Model Description and Rock properties	102
	5.2.3	Model Results and Comparison with Field measurements	107
	5.2.4	Effect of Shale Layer Inclination	111
5	3	Shale Degradation and Squeezing Case Study	116
	5.3.1	Data of Case Study	116
	5.3.2	Model Description and Rock properties	117
	5.3.3	Model Results	118
5.4	4	Conclusions of case study	121
C]	HAPTI	ER 6 PARAMETRIC STUDY ON JOINT PROPERTIES	123
6. 2	1	General	123
6.2	2	Model Description and Rock properties	123
6. .	3	Joint Shear stiffness (Jks)	125

6.3.1	Effect of Joint Shear stiffness (Jks) for Different Joint Types	126
6.3.2	Effect of Joint Shear stiffness (Jks) for Different Shale Inclination Ang	gles
		133
6.4	Joint normal stiffness (Jkn)	139
6.4.1	Effect of Joint Normal Stiffness (Jkn) for Different Joint Types	140
6.4.2	Effect of Joint Normal stiffness (Jkn) for Different Shale Inclination	
Ang	gles	144
6.5	Joint Friction (Jf)	149
6.5.1	Effect of Joint Friction (Jf) for Different Joint Types	149
6.5.2	Effect of Joint Friction (Jf) for Different Shale Inclination Angles	154
6.6	Joint Cohesion (Jc) and Joint Tension (Jt)	158
6.6.1	Effect of Joint Cohesion (Jc) and Joint Tension (Jt) for Different Joint	
6.3.2 Effect of 6.4.1 Effect of 6.4.2 Effect of 6.4.2 Effect of 6.5.1 Effect of 6.5.2 Effect of 6.6.1 Effect of 6.6.1 Effect of 6.6.2 Effect of 6.6.2 Effect of 6.6.2 Effect of 6.6.2 Effect of 6.6.3 Compare 6.8 Conclust CHAPTER 7 SU 7.1 Genera 7.2 Conclust 7.3 Recommand References Appendix (A) REFERENCES APPENDIX (A) A.1 FISH L	oes	158
6.6.2	Effect of Joint Cohesion (Jc) and Tension (Jt) for Different Shale	
Incl	lination Angles	163
6.7	Comparison Between Different Parameters	168
6.8	Conclusions of parametric study	171
СНАРТ	ER 7 SUMMARY, CONCLUSIONS AND RECOMMEDATIONS	174
7.1	General	174
7.2	Conclusions	175
7.3	Recommendations	178
7.4	Recommended Future Studies	179
REFER	ENCES	180
APPEN	DIX (A)	194
A.1	FISH Langauage:	194
A.2	The Designed FISH Model:	195

A.3	The RockFall FISH Model:	201
APPE	ENDIX (B)	207
B.1	Shale Properties:	207
B.2	Joints Properties:	211
APPENDIX (C)		216

LIST OF FIGURES

Table of Figures Page	3
Figure (2.1): Parameters describing the rock mass; letters ("A" etc.) refer to	
description of parameter in text (Wyllie, 1999);	.10
Figure (2.2) Relationships between shear and normal stresses on sliding surface for	
five different geological conditions (Transportation Research Board, 1996)	.17
Figure (2.3) Definition of shear strength of discontinuity surface; (a) shear test of	
discontinuity; (b) plot of shear displacement vs shear stress; (c) Mohr plot of peak	
strength; (d) Mohr plot of peak and residual strength (After Wyllie and Mah, 2004).	17
Figure (2.4): Patton's experiment on the shear strength of saw-tooth specimens	
(Patton, 1966)	.18
Figure (2.5): Roughness profiles and corresponding JRC values (After Barton and	
Choubey 1977)	.22
Figure (2.6): Alternative method for estimating JRC from measurements of surface	
roughness amplitude from a straight edge (Barton 1982)	.23
Figure (2.7): Estimate of joint wall compressive strength from Schmidt hardness	
(Deere and Miller, 1966)	.24
Figure (2.8) Types of failure mechanism found in rock slopes and cliffs (After Allise	on,
1998)	.27