

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائـــق الاصليـة تالفـة

بالرسالة صفحات لم ترد بالاصل

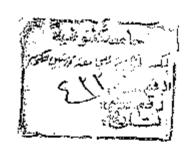
EFFECT OF SOME CULTURAL PRACTICES ON RICE

Ву

Ibrahim Mohamed Osman El-Rewiny

B.Sc. (Agric.), Tanta University, 1983

THESIS


Submitted in Partial Fulfillment of the Requirements for The Degree of

MASTER OF SCIENCE

IN

AGRONOMY

Department of Agronomy (Faculty of Agriculture Minufiya University

1996

Approved by:

Snashin Shanhan

M. E. Gomaa

(Committee in Charge)

Date : 9 / 4 / 1996

SUPERVISION COMMITTEE

Prof. Dr. Mohamed El-Sayed Gomaa

Agronomy Department Faculty of Agriculture Minufiya University M. E. Gomaa

Prof. Dr. Abdel-Azim El-Tantawi Badawi

Head of Rice Research & Development Program Deputy Director of Field Crops Research Institute Agricultural Research Center Ministry of Agriculture A. Tantowi Bodawi

Dr. Said El-Sayed Ali Ismail

Associate Professor of Agronomy Agronomy Department Faculty of Agriculture University of Minufiya Said E Esmal

Dr. Shaaban Ahmed El-Shamarka

Associate Professor of Agronomy Agronomy Department Faculty of Agriculture University of Minufiya SA UShamawa

ACKNOWLEDGEMENT

All praises rests for almighty Allah who made easy the work to complete.

The author wish to express his gratitude to **Prof. Dr. M.E. Gomma**, Professor of Agronomy, Faculty of Agriculture, Minufia University, for his supervision, suggesting the problem, continuous help during the course of this study and preparing the manuscript.

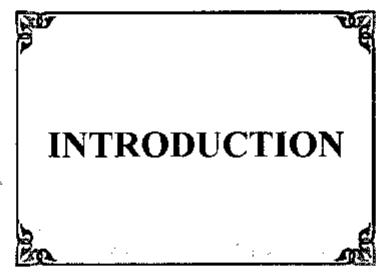
Thanks and sincere appreciation are also given to **Prof. Dr. A.T. Badawi**, Head of Rice Program and Deputy of Field Crops Research Institute,

Agric. Res. Center, for his supervision, suggesting the problem and providing the facilities for carrying out this work.

Deep gratitude are also extended to Dr. S.E.A. Ismail, Associate Prof. of Agronomy, Faculty of Agriculture, Minufia University for his supervision, fruitful guidance, analysis of data and writing the manuscript.

Deep thanks and sincere gratitude are also to Dr. S.A. El-Shamarka,

Associate Prof. of Agronomy, Faculty of Agriculture, University of Minufia, for his


supervision and valuable guidance.

The author is also deeply indebted to all staff members of RRTC, Sakha, Kafr El-Sheikh, specially staff members of Agronomy Department, for their continuous help during this work.

Special appreciation is due to my father, my sister, my wife, my daughter and my sons, for their bray and help me during this study.

CONTENTS

		Page
ACKNO'	WLEDGMENT	
INTROD	UCTION	1
REVIEW	OF LITERATURE	3
A.	Growth characters	3
В.	Yield and its components	7
C.	Grain quality characters	19
MATERI	IALS AND METHODS	23
Α.	Growth characters	25
В.	Yield and its components	25
C.	Grain quality characters	26
RESULT	S AND DISCUSSION	29
1.	Growth characters	29
2.	Yield and its components	49
3.	Grain quality characters	87
SUMMA	RY,	109
	TURE CITED	112
ADARIC	SUMMADV	

INTRODUCTION

Rice (Oryza sativa L.) is the main food crop for about one half of the world's population; it is the staple food in the south and southeast Asian countries. About one-third of mankind (1.3 billion people) depends on rice for more than half of its food (Annual Report of International Rice Research Institute (IRRI) for 1976).

About 53% of the world's rice growing area is irrigated and produced 73% of the world's rice (DeDatta, 1986).

In Egypt, rice is considered to be the second export crop after cotton, and also as one of the most important food crops after wheat. It occupies annually about one million feddan with an approximate production of 4.8 million metric tons. There was a gradual increase in the national average of grain yield, from 2.14 tons/fed. in 1976, to 2.40 tons/fed. in 1983 (Food and Agricultural Organization (FAO), 1985).

Inc. 1995; the national average yield of rice was about 3.44 tons/fed. (one feddan= 4200 m²) which equals 8.2 tons/ha (Final Report of Rice National Compaign). This increase was mainly due to replacing the old rice cultivars with the newly improved varieties such as Giza 176, good research and development infrastructure, excellent arrangement for international cooperation in science and technology and above all, hard working farming community.

Under irrigated conditions, rice is either direct seeded or transplanted. In the last decade, direct seeding has been adopted as the most efficient rice planting method in many developed countries where labor supply is limited and expensive (DeDatta, 1986).

As compared with the transplanting method, direct seeding eliminates labor demands for seedbed preparation, seedling care, pulling of seedlings, and seedling transport from nursery to the permanent field.

The sowing date indirectly determines soil temperature and other weather conditions to which the young seedlings, likely, will be exposed during growth, panicle formation, heading and flowering, grain formation and ripening.

The number of plants in a given area of land exerts a marked influence on growth vigor of the individual plant. Increasing the seeding rate causes decreasing the yield per plant. Numerous researchers have reported that establishing a critical rice plant population was necessary to obtain maximum grain yields.

Nitrogen fertilizer management plays an essential role in increasing rice crop productivity. Rice is noted for its poor utilization of fertilizer nitrogen in comparison with other field crops. Increasing nitrogen level, is one of the most important factors that limits productivity of rice cultivars. Hence, a newly cultivated rice cultivar needs further investigation of such important factors to determine the optimum level of each in order to achieve maximum productivity.

The present study aimed to investigate the effects of sowing date, seeding rate, nitrogen level and their interactions on growth, yield and its components and some grain quality characters of the newly cultivated rice cultivar Giza 176.

REVIEW OF LITERATURE

<u>REVIEW OF LITERATURE</u>

Several researchers studied the effect of sowing date, seeding rate and nitrogen levels on rice growth, yield and its components and quality characters. These researchers will be reviewed for each factor as follows:

A. GROWTH CHARACTERS:

1- The Effect of Sowing Date:

Wells et al. (1983), in USA, reported that sowing on April 7, May 4 and June 8 significantly affected the phenological stage and number of days to heading.

Dunand and Dilly (1984), in USA, found that delaying in sowing date from mid-April to mid-May reduced plant height.

Yamamato et al. (1984), in Japan, found that the number of tillers and plant height responded more to early sowing date.

Canet and Colon (1986), in Cuba, reported that sowing in mid-July significantly reduced plant height compared with earlier sowing in mid-April or May and June.

Rao (1986), in India, found that early sowing produced more tillers than late sowing.

El-Kalla et al. (1987), in Egypt, reported that the number of days from sowing to heading had gradually decreased with delay in sowing to June 20. The tallest plants were those resulted from earlier date, i.e. at April 20.

El-Nemer (1987), in Egypt, found wide variations for vegetative period due to differences in sowing date.

Jiang and Zhou (1987), in China, revealed that delay in sowing at July 25 decreased the number of tillers/mu (1 mu= 670 m²).

Park *et al.* (1990), in Korea, recorded that critical sowing dates based on heading date of rice cultivars Odaebyeo, Balagonbyeo and Seomlinbyeo were 10th June and 20th May.

Abd El-Rahman *et al.* (1992), in Egypt, stated that the earlier sowing date (May 1st) gave superior plant height and panicle length.

Assey et al. (1992), in Egypt, found that tallest plants were obtained from April 10 sowing date when compared with delayed sowing dates of 20th and 30th April.

higher means of plant height than sowing dates at May 1st and May 30th.

2- The Effect of Seeding Rate:

Shaalan and Ali (1981), in Egypt, reported that increasing seeding rate up to 60 kg seeds/feddan, increased the plant height for Giza 170 rice cultivar.

Aliaca et al. (1985), in Spain, using seeding rates of 96, 144 and 192 kg/ha, reported that there was no marked response of seeding rate on the number of tillers/plant.