

Ain Shams University **Faculty of Women** for Arts, Science and Education

Preparation and characterization of Polyaniline nanocomposite by Laser Irradiation.

Thesis Submitted for Ph.D degree in Physics by Fawzaya Ibraheem Mohamed Barakat

SUPERVISOR COMMITTEE

Prof. Dr. A.B.EL-Bialy

Professor of spectroscopy Faculty of Women for Arts, Science and Education Physics Department-Ain Shams University

Professor of Spectroscopy National Research Center.

Prof. Dr. A.A.Shabaka

Dr. S.Abd.El-Mongy Ahmed

Assist. Prof. of spectroscopy Faculty of Women for Arts, Science and Education Physics Department-Ain Shams University

Dr. Naglaa Ahmed Shaheen

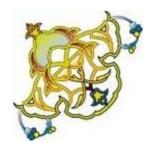
Lecturer of Spectroscopy Faculty of Women for Arts, Science and Education Physics Department-Ain Shams University

Dr. RehamK.Abd El Hamid

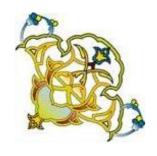
Lecturer of Spectroscopy Faculty of Women for Arts, Science and Education Physics Department-Ain Shams University

Ain Shams University Faculty of Women for Arts, Science and Education

Approval sheet Ph.D. thesis


NAME OF STUDENT: Fawzaya Ibraheem Mohamed Barakat Thesis Title: Preparation and characterization of Polyaniline nanocomposite by Laser Irradiation

SUPERVISOR COMMITTEE


Prof. Dr. A.B.EL-Bialy	()
Professor of spectroscopy Faculty of Women for Arts, Science and Educa Ain Shams University.	ation -Physics Department-	
Prof. Dr. A.A.Shabaka professor of spectroscopy-National Research C	Center.)
Dr. S.Abd.El-Mongy Ahmed Assist. of spectroscopy Faculty of Women for Arts, Science and Education Shams University.	(ation -Physics Department-)
Dr. Naglaa Shaheen Lecturer of Spectroscopy Faculty of Women for Arts, Science and Education Shams University.	(ation -Physics Department-)
Dr. RehamK.Abd El Hamid Lecturer of Spectroscopy Faculty of Women for Arts, Science and Education Shams University.	(ation -Physics Department-)
Date of Research: Post Graduate Studi Approval Stamp Faculty Council Approval		
Date: / /	Date: / /	



CONTENTS

Number	Subjects	Page		
	Abstract	1		
	Summary	VI		
	List of Tables	XIII		
	List of Figures	XIV		
Chapter I	: GENERAL INTRODUCTION AND LITERATURE SURVE	Y		
1.1.	Nanomaterials	1		
1.2.	Nanocomposites synthesis and processing	2		
1.3.	Conducting Polymers	4		
1.3.1	Polyaniline (PANI)	5		
1.3.2	Molecular Structure of Polyaniline.	5		
1.3.3	Polyvinyl alcohol (PVA)	8		
1.4.	Literature Survey	9		
1.5.	Aim of the Work	26		
Chapter II: Theoretical Concepts				
2.1.	Optical Spectroscopy	27		
2.1.1	Nature of Infrared Spectra	29		
2.2.	Ultraviolet and visible Spectra	34		
2.2.1	Nature of the electronic excitations	34		
2.2.2	Type of transition	37		
2.2.3	Chromophore	38		
2.2.4	The effect of conjugation	39		
2.2.5	Beer-Lambert law	40		
2.3.	Transmission Electron Microscope	41		

Number	Subjects	Page
2.3.1	Electron Microscopy Imaging	42
2.4.	X- Ray Diffraction (XRD)	42
2.4.1	Crystallite Size Determination from Line Broadening	43
2.5.	Dielectric properties	43
2.5.1	Classification of Dielectrics	44
2.5.1.a.	Non polar Dielectrics	44
2.5.1.b	polar dielectrics	45
2.6.	Type of polarization	46
2.6.1.	Electronic (optical) polarization (αe)	46
2.6.2	Ionic polarization (αi)	47
2.6.3.	Orientational (Dipolar) polarization (αd)	47
2.6.4.	The Interfacial (space charge) polarization(αs)	48
2.6.5	Total polarizability	48
2.7.	Electrical properties of polymers	50
2.7.1	Dielectric constant	50
2.7.2	Dielectric loss	51
2.7.3	Dielectric Loss Angle	52
2.8.	Types of Electrical conduction	53
2.8.1	Electronic conduction	53
2.8.2	Ionic Conduction	53
2.9.	D.C. Electrical conductivity	53
2.10	A.C.Electrical Conductivity	54

2.11. Models of Conduction Mechanisms 55 2.11.1 The Tunneling Model 55 2.11.2 The hopping model 57 Chapter III: Experimental Techniques and Instrumentation 59 3.1 Materials 59 3.2 Preparation of Investigated Samples 59 3.2.1 Sample Preparation: 59 3.3 Instrumentation 61 3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 61
2.11.2 The hopping model 57 Chapter III: Experimental Techniques and Instrumentation 3.1 Materials 59 3.2 Preparation of Investigated Samples 59 3.2.1 Sample Preparation: 59 3.3 Instrumentation 61
Chapter III: Experimental Techniques and Instrumentation 3.1 Materials 59 3.2 Preparation of Investigated Samples 59 3.2.1 Sample Preparation: 59 3.3 Instrumentation 61
3.1 Materials 59 3.2 Preparation of Investigated Samples 59 3.2.1 Sample Preparation: 59 3.3 Instrumentation 61
3.2 Preparation of Investigated Samples 59 3.2.1 Sample Preparation: 59 3.3 Instrumentation 61
3.2.1 Sample Preparation: 59 3.3 Instrumentation 61
3.3 Instrumentation 61
5.5
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 61
3.3.1. a Advantages of FT-IR 64
3.3.2 Ultraviolet Visible Spectroscopy (UV-Vis) 65
3.3.3 Transmission Electron Microscope (TEM) 67
3.3.4 X - Ray Diffraction (XRD) 69
3.3.5 D.C Electrical Conductivity Measurements 71
3.3.6 Ac Electrical conductivity Measurements 74
Chapter IV: Results and Discussion
4.1 Fourier transform infrared (FTIR) spectrometer 76
4.1.1 FTIR Spectroscopic Results of Pure polyvinyl alcohol 76
4.1.2 FTIR Spectroscopic Results of Pure Aniline hydrochloride 79
4.1.3 FTIR spectrum of PANI/PVA composite before irradiation 82
4.1.4 FTIR Spectra of PANI/PVA composite after irradiation times 86
4.2 UV-Visible Spectroscopy 91
4.2.1 UV-Visible Spectroscopic Studies of Pure Polyvinyl alcohol (PVA). 94

Number	Subjects	Page
4.2.2	UV-Visible Spectroscopic Studies of Pure Aniline	96
4.2.2	hydrochloride.	70
4.2.3	UV-Vis Spectroscopic Studies of PANI/PVA composite before	98
	irradiation	
4.2.4	The UV-Vis Spectra of PANI/PVA composite at Different	98
	Irradiation Times	
4.3.	Transmission Electron Microscopy (TEM) of PANI/PVA Nano composite by laser Irradiation.	105
44	X-Ray Diffraction	113
4.4.1	X-Ray Diffraction of PANI/PVA composite before Irradiation.	113
4.4.2	X-Ray Diffraction of PANI/PVA Nano composite after	115
	Irradiation.	
4.5	D.C. Electrical Conductivity	120
4.5.1	Electrical conductivity of PANI/PVA composite before and	120
4.3.1	after irradiation time	120
4.6	Dielectric Properties of of PANI/PVA nanocomposite before	132
4.0	and after irradiation.	132
4.6.1	Dielectric Constant.	132
4.6.2	Dielectric Loss.	141
4.6.3	Dielectric loss angle (Dissipation factor).	148
	Chapter V: Conclusion	165

List of tables

Table	Title	Page
Table(4.1)	The infrared absorption bands and their assignments for the pure polyvinyl alcohol (PVA).	77
Table(4.2)	The infrared absorption bands and their assignments for pure aniline hydrochloride	80
Table(4.3)	The infrared absorption bands and their assignments for PANI/PVA composite before irradiation	83
Table (4.4)	The infrared absorption bands and their assignments for PANI /PVA composite at different irradiation times .	87
Table (4.5)	The intensity ratio of the quinonoid to benzenoid structure at different irradiation times.	92
Table (4.6)	Assignments of the UV-Vis absorption bands of PANI /PVA composite at different irradiation (3,6,9,12 and 15)mints.	102
Table (4.7)	Diameter of PANI/ PVA nanocomposite with different irradiation times.	106
Table (4.8)	d-spacing and the particle size calculated from XRD analysis of PANI/PVA nanocomposite at different irradiation time (3,6,9,12 and 15) min.	116
Table (4.9)	The electrical conductivity of PANI/PVA nanocomposite before and after different irradiation time, at room temperature.	123
Table (4.10)	Activation energies of PANI/PVA nanocomposite before and after different irradiation time.	129
Table (4.11)	Relaxation time for PANI/PVA composite before and after different irradiation time	157
Table (4.12)	Relaxation time for PANI/PVA composite before and after different irradiation time.	158