بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلات المنافلة من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٠٤٠ To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الاصليـة تالفـة

بالرسالة صفحات لم ترد بالاصل

Continuous-Time Current- Mode Folding Analog to Digital Converter

By Engineer: Yasser Abdel Hamid Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree Of MASTER OF SCIENCE

In

ELECTRONICS AND COMMUNCATIONS ENGINEERING

200

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2001

Continuous-Time Current- Mode Folding Analog to Digital Converter

By Engineer: Yasser Abdel Hamid Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree Of MASTER OF SCIENCE

In ELECTRONICS AND COMMUNCATIONS ENGINEERING

Under Supervision of Prof. Dr. Abdel Halim Shousha

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2001

Continuous-Time Current- Mode Folding Analog to Digital Converter

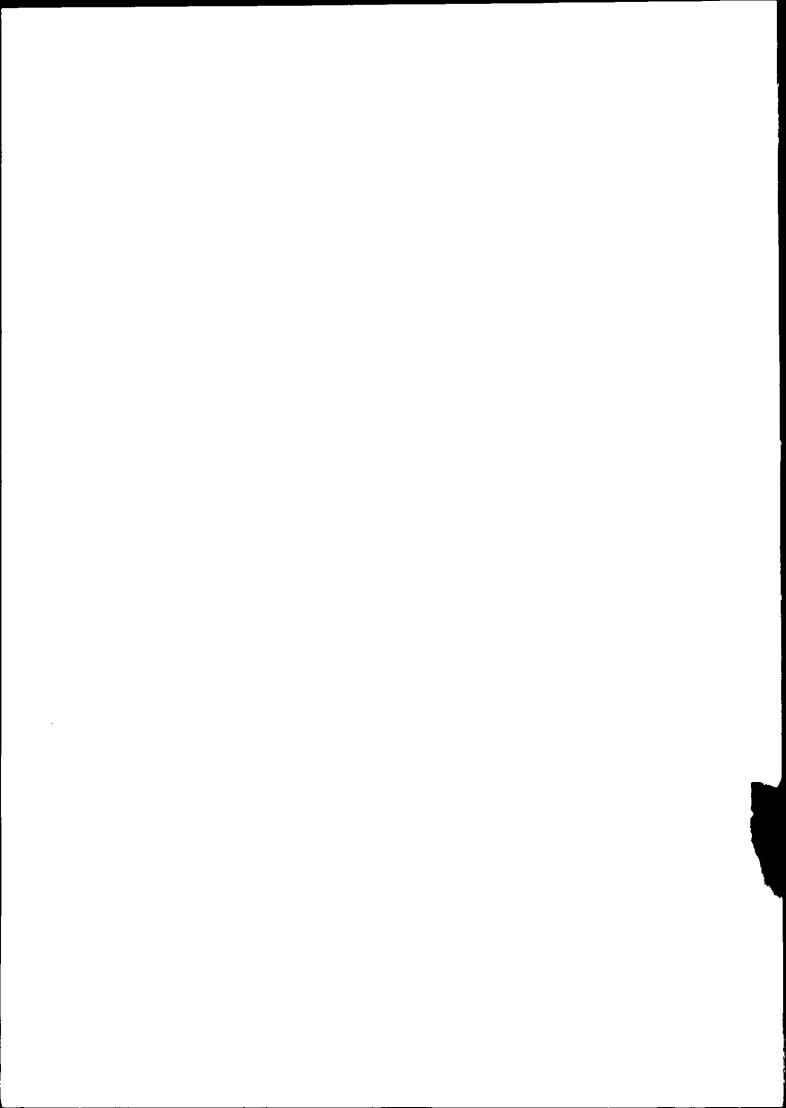
By Engineer: Yasser Abdel Hamid Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree Of MASTER OF SCIENCE

In

ELECTRONICS AND COMMUNCATIONS ENGINEERING

Approved By the Examining Committee


Prof. Dr. Abdel Halim Shousha

Prof. Dr. Amin Mohamed Nasar Norm

Prof. Dr. El say Moustafa Saad-

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2001

بسم الله الرحمو الر-ل ربے زدنے علم ﴿وقـــ د ق الله العظ

List of Figures

Figure 2.1	Full parallel flash A/D converter
Figure 2.2	Two-step flash A/D converter
Figure 2.3	Functional schematic of a pipeline A/D converter
Figure 2.4	Static transfer characteristic for 3-b pipeline stage with
	digital error correction
Figure 2.5	System block diagram of parallel architecture
Figure 2.6	Timing diagram of parallel pipeline array
Figure.2.7	Partial chip florplan showing four parallel channels
Figure 2.8	the schematic diagram of the an 8-b current -mode A/E
	converter (IDAC)
Figure 2.9	Coupled differential pair (CDP)
Figure 2.10	Overview of the complete 8-b folding A/D converter
Figure 2.11	Block diagram of folding A/D converter
Figure 2.12	Saw-tooth waveform
Figure 2.13	the example of 5-b ADC with eight folding blocks
Figure 2.14	A basic bipolar folding circuit. The reverences
	can be generated by resistor ladder
Figure 2.15	Current -mode folder with preamps
Figure 2.16	The outputs of the two current dividers are
	added to form the interpolated
Figure 2.17	Part of the CMOS implementation
Figure 2.18	Block Diagram of the folding and interpolating A/D
	converter
Figure 2.19	the comparator outputs from a cyclic thermometer code.

Figure 2.20	Block diagram of sample and hold
Figure 2.21	Simplified schematic for the S/H op-amp
Figure 2.22	Simplified schematic for the comparator
Figure 3.1	Block diagram of the current mode folding A/D converter
Figure 3.2	the Folding waveform
Figure 3.3	Voltage to current converter circuits
Figure 3.4	P-SPICE simulation for voltage to current converter
Figure 3.5	Typical triangular function
Figure 3.6	Current-mode absolute value circuit
Figure 3.7	Bounded difference operator circuit
Figure 3.8	Current mode triangle function circuit
Figure 3.9	PSPICE simulation for current mode absolute value circuit
Figure 3.10	Current compactor circuit
Figure 3.11	Current comparator transfer function
Figure 3.12	MSB's, and LSB's output
Figure 3.13	Block diagram for the coarse A/D converter
Figure 3.14	the four-bit example, the three coarse current
	comparators decide the MSB's
Figure 3.15	Block diagram for the output of three coarse current
	Comparators circuits.
Figure 3.16	Block diagram for the output of three coarse current
	Comparators circuits with the encoder to decide the
	MSB's
Figure 3.17	the coarse Encode Circuit Diagram
Figure 3.18	PSPICE simulation for the current comparator output (Z1)

Figure 3.19	PSPICE simulation for the current comparator output (Z2)
Figure 4.20	PSPICE simulation for the current comparator output (Z3)
Figure 3.21	PSPICE simulation results for the encoder logic circuits
	which Output X ₃
Figure 3.22	PSPICE simulation results for the encoder logic circuits
	which Output X ₂
Figure 3.23	Block diagram for fine A/D converter
Figure 3.34	the two triangles wave form
Figure 3.25	Block diagram for the folding circuit output
Figure 3.26	Two current mode triangle function folding circuit
Figure 3.27	PSPICE simulation results for the output of the triangle
	function current mode circuit (FOLD 1)
Figure 3.28	PSPICE simulation results for the output of the triangle
·	function current mode circuit (FOLD 2)
Figure 3.29	The block diagram for adding two triangles
Figure 3.30	PSPICE simulation results for the folding circuits, two-
	triangle waveform
Figure 3.31	Diagram presents the output of the folding Circuits and
	the Current Comparator
Figure 3.32	The three coarse current Comparators decide the LSB's
Figure 3.33	PSPICE simulation for the current comparator output (Z1)
Figure 3.34	PSPICE simulation for the current comparator output (Z2)
Figure 3.35	PSPICE simulation for the current comparator output (Z3)

Block diagram for the output of three fine current Figure 3.36 Comparators circuits with the encoder to decide the MSB's Figure 3.37 The fine encode circuits diagram Figure 3.38 The corrective circuits diagram Figure 3.39 The designed corrective circuits diagram PSPICE simulation results for the corrective logic circuits. Figure 3.40 Output X₁ PSPICE simulation results for the corrective logic circuits Figure 3.41 Output Xo Figure 3.42 The diagram represents the four outputs bits PSPICE simulation results for the four bits Xo, X1, X3, and Figure 3.43 X₄ Settling time diagram Figure 3.44 Figure 4.1 Scaled n MOS transistor Dependence of the power consumption and sampling rate Figure 4.2 on the scaling factor

List of Tables

Table 3.1	the MSB's logic table
Table 3.2	the LSB's logic table
Table 3.3	the corrective circuit truth table
Table 4.1	table for the two types of scaling parameters
Table A.1	the Simulation Results of the Encoder Circuits
Table A.2	the Simulation Results of the complete system outputs, MSB's & LSB's