

Genetic Basis of Dilated Cardiomyopathy in Children

Essay
Submitted for Partial Fulfillment of Master Degree
in Pediatrics

By

Zakia Badr Sayed Mohamed (MBBCh, Ain shams university)

Supervised by

Prof. Dr. Mona Moustafa El Ganzory

Professor of Pediatrics

Faculty of medicine – Ain shams university'

Prof Dr. Nevin Mohamed Mamdouh
Professor of Pediatrics
Faculty of Medicine – Ain shams university

Prof. Dr. Waleed Mohamed El guindy
Assistant Professor of Pediatrics
Faculty of Medicine – Ain shams University

Faculty of medicine Ain shams university 2014

First of all, I would like to express my deep gratitude to **ALLAH** for his care and generosity throughout my life.

I would like to express my sincere appreciation to **Prof. Dr. Mona Moustafa El Ganzory**, Professor of Pediatrics, Ain Shams University, for her keen supervision and guidance and her overwhelming support that has been of great help throughout this work.

I am very thankful to **Prof Dr. Nevin Mohamed Mamdouh,** Professor of Pediatrics,
Ain Shams University for her great support
& effort throughout the whole work.

I would also like to express my great thanks to **Prof. Dr. Waleed Mohamed El-Guindy,** Assistant Professor of Pediatrics, Ain Shams University for the great effort he has done in this work and for helping me through it.

Zakia Badr Sayed Mohamed

List of Contents

	Page No.
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Cardiomyopathies	4-15
Chapter (2): Dilated Cardiomyopathy	16-89
Chapter (3): Genetics of dialated Cardiomyopathy	90-157
Summary	158-165
Conclusion	166
Recommendations	167
References	168-222
Arabic Summary	

List of Figures

Fig. No.		Page No.
Figure (1)	Heart wall layers	5
Figure (2)	Dilated cardiomyopathy	8
Figure (3)	Hypertrophic cardiomyopathy	9
Figure (4)	Heart section from a cardiac explant in patient with end stage cardiomyopathy	38
Figure (5)	Echocardiogram of patient with dilated Cardiomyopathy	45
Figure (6)	Severe dilated cardiomyopathy	46
Figure (7)	Pediatric dilated cardiomyopathy	46
Figure (8)	Chest radiograph of patient with dilated cardiomyopathy	47
Figure (9)	X-ray diagnosis of cardiomyopathy	48
Figure (10)	12-lead electrocardiogram from a 2-years old child with familial IDC	48
Figure (11)	Echocardiography of dilated cardiomyopathy	50

Figure (12)	Transthoracic 2D-echocardiography revealed	
	dilated right atrium and right ventricle	51
Figure (13)	Cine-MRI in four-chamber view (left) and short axis view (right) at end diastolic	55
Figure (14)	Genes linked to DCM	92
Figure (15)	Genetic heterogeneity and overlap in genes causing cardiomyopathies	93
Figure (16)	The sarcomere is a target for cardiomyopathy mutations	102
Figure (17)	A view of the cardiomyocyte	109
Figure (18)	Protocol for the family study of familial cardiomyopathies	133

List of Tables

Table No.		Page No
Table (1)	Types of cardiomyopathies	13
Table (2)	Causes of secondary DCM	19
Table (3)	Summary of Genetic Loci and Disease Genes for FDC	22
Table (4)	Factors Identified as Causes of Myocardial Damage	23
Table (5)	Differential diagnosis of myocarditis by age	26
Table (6)	Total digitalizing dose (TDD) and maintenance dose of digoxin	66
Table (7)	Factors associated with bad Prognosis in DCM	88
Table (8)	Summary of dilated cardiomyopathy genes/loci	96
Table (9)	Variable phenotypic expression of single gene defects	100

Table (10)	Genes associated with DCM and	
	arrhythmia/ conduction disease	116
Table (11)	Skeletal myopathies associated with DCM	118
Table (12)	Examples of in born error of metabolism	4.00
	associated with DCM	128
Table (13)	Examples of genetics syndrome associated with DCM	
Table (14)	Possible outcomes of clinical screening for	
	familial dilated cardiomyopathy	151

List of Abbreviations

ABCC9 ATP-binding cassette, subfamily C, member 9

ACE Angiotensin-converting enzyme

ACTC1 Actin, cardiac muscle 1

AD Autosomal dominant

AFLP Acute fatty liver of pregnancy

AHA The American Heart Association

AIDS Acquired immunodeficiency syndrome

ANKRD1 Ankyrin repeat domain 1

ANP Atrial natriuretic peptide

ARVC Arrhythmogenic right ventricular cardiomyopathy

BAG3 BCL2- associated athanogene 3

B-MHC B-Myosin heavy chain

BNP B-type natriuretic peptide

CARP Cardiac arkyrin repeat protein

CASQ2 Calsequestrin 2

CAV3 Caveolin 3

CDDC Cardiac conduction system disease

CK Creatine kinase

CLIA Clinical Laboratories Improvement Act

CM Cardiomyopathy

CMR Cardiac magnetic resonance

CPVT Catechoteminergic polymorphic ventricular

tachycardia

CSRP3 Cysteine and glycine –rich protein 3

CTF1 Cardiotrophin 1

CTNT Cardiac troponine T

CVB3 Coxsackievirus B3

DCM Dilated cardiomyopathy

DES Desmin

DMD Duchenne muscular dystrophy

DSG2 Desmoglein 2

DSP Desmoplakin

DTMRI Diffusion tensor magnetic resonance imaging

ECG Electrocardiogram

EF Ejection fraction

EMD Emerein gene

EMD Emery-Dreifuss muscular dystrophy

EYA4 Eys absent homoiog 4

FDA Food and Drug Administration

FDC Familial Dilated Cardiomyopathy

FKRP Fukutin-related protein

FKTN Fukutin

FOXD4 Forkhead box D4

FSHMD Facioscapulohumeral muscular dystrophy

GCSF Granulocyte colony stimulating factor

GH Growth hormone

GLA Galactosidase

GM-CSF Granulocyte, Monocyte – Colony stimulating factor

HCM Hypertrophic cardiomyopathy

HELP Hemolysis, elevated liver enzymes, and low platelet

count

HF Heart failure

HIV Human immunodeficiency virus

HLA Human leukocyte antigen

ICD Implantable cardioverter defibrillator

IDC Idiopathic dilated cardiomyopathy

IEM Inborn errors of metabolism

IGF Insulin like growth factor

IV Intravenous

JUP Junction plakoglobin

LAMA Laminin

LAMP2 Lysosomal-associated membrane protein 2

LAP2 α Lamin associated polypeptide 2α

LBBB Left bundle branch block

LDB3 LIM domain binding 3

LGMD Limb girdle muscular dystrophy

LMNA Lamin A/C

LVADS Left ventricular assist devices

LVNC Left ventricular non compaction cardiomyopathy

MLP Muscle LIM protein

MRI Magnetic resonance imaging

MYBPC Myocin binding protein

MYH Myosin heavy chain

MYL Myosin light chain

MYLK2 Myosin light chain kinase 2

MYOZ2 Myozenin 2

NEXN Nexilin

NYHA New York heart association

PCMR The pediatric cardiomyopathy registry

PCR Polymerase chain reaction

PDEI Phosphodiesterase Enzyme Inhibitors

PKP2 Plakophilin 2

PLN Phospholamban

PRKAG2 Protein kinase, AMP-activated

PSEN Presenilin

RB20 Ribonucleic acid binding protein

RBM20 RNA binding motif protein 20

RCM Restrictive cardiomyopathy

RYR2 Ryanodine receptor 2

SAEGG Signal averaged electrocardiography

SCD Sudden cardiac death

SCN5A Sodium channel, voltage-gated,type V

SDHA Succinat dehydrogenase complex, sub unit A

SGCD Sarcoglycan

SND Sinus node dysfunction

SOLVD Studies of left ventricular dysfunction

SYNE1 Spectrin repeat containing, nuclear envelope 1

SYNE2 Spectrin repeat containing, nuclear envelope 2

TAZ Tafazzin

TCAP Titin-cap

TK Titin kinase

TMEM43 Transmembran protein 43

TMPO Thymopoietin

TNNC1 Troponin C type 1

TNNT2 Troponin T Type 2

TNT Tissue Necrotizing factor

TPM Tropomyosin

TPM1 Tropomysin 1

TTE Transthoracic echocardiography

TTN Titin

TTR Transthyretin

US United States

VCL Vinculin

VF Ventricular fibrillation

VT Ventricular tachycardia

WHO The World Health Organization

XL X-linked

ZLS Zimmermann-laband syndrome

Introduction

Introduction

Cardiomyopathy is an anatomic and pathologic diagnosis associated with muscle dysfunction or electrical dysfunction of the heart. The American Heart Association (AHA) defines cardiomyopathy as a heterogenous group of diseases of the myocardium, usually with inappropriate ventricular hypertrophy or dilatation (Wexler et al., 2009).

Under the new cardiomyopathy classification, it includes dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), and left ventricular non compaction cardiomyopathy (LVNC). Many of these disorders are genetically inherited, while a small group of these diseases are acquired (Elliot et al., 2008).

DCM is the most common type of cardiomyopathy, accounting for 60% of all primary cardiomyopathies and is a leading cause of heart failure and heart transplants. DCM is a primary heart muscle disease that is characterized by progressive ventricular dilatation and impaired systolic function (**Menon et al., 2008**).

The annual incidence of dilated cardiomyopathy in children younger than 18yrs was 0.57 per 100,000 per year overall in