THE EFFECT OF DIFFERENT TYPES OF OCCLUSAL LOADING ON MARGINAL BONE CHANGES AROUND DENTAL IMPLANTS

Presented By

Fatma Hamed Mohammed ElDemerdash

B.D.S. (Ain Shams University) M.D.S. (Ain Shams University)

Submitted in Partial Fulfillment of Doctor Degree In Oral Medicine, Periodontology and Oral Diagnosis Supervisors

Dr. Khaled Atef Abd El-Ghaffar

Professor and Chairman of Oral Medicine, Periodontology, Oral Diagnosis and Radiology Faculty of Dentistry, Ain Shams University

Dr. Mohammed Sherif EL-Mofty

Lecturer of Oral Medicine, Periodontology, Oral Diagnosis and Radiology Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ain Shams University

2012

بسم الله الرحمن الرحيم

يرفعاللهالذينآمنوامنكموالذينأوتواالعلمدرجات

صدقاللهالعظيم

من سورة المجادلة الآيه ١١

"All that I am, or hope to be, I owe to my angel mother"

Abraham Lincoln

I dedicate this work to my dearest mother, to whom I owe any achievement in my life.

Although she is no longer present in person, but her soul remains to be an ever present inspiration and support.

Acknowledgement

My sincere gratitude goes to Professor Dr. Khaled Atef Abd El-Ghaffar, Professor and Chairman of Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Ain Shams University for his valuable guidance, support and patience that he showed me throughout this work. His wisdom, knowledge and commitment made it possible for this work to reach its final stages.

I would like to gratefully and sincerely thank Dr. Mohammed Sherif El-Mofty for his guidance, patience and most importantly his friendship. His constructive comments and support have been of great value in this study.

I owe my sincere gratitude to Professor Dr. Hesham Khalifa for his help with the statistics in this study.

I am obliged to many of my colleagues in the Oral Medicine, Periodontology and Oral Diagnosis department who supported me throughout the length of this study and to our nursing staff and workers whose much appreciated help also contributed to my work.

It is a great pleasure to thank my friends who were a continuous encouragement and support to me throughout my work, and especially, Dr. Heba El-Sanafawy whose selfless help was always present on demand.

Last but not least, I would like to thank my Friend Mr. Gulshan Jamil for his never-ending support and encouragement and for making me believe that "where there is a will, there is a way"

List of Figures

Figure	Title	Page
1	Scheme for progressive loading	54
2	Scheme for conventional loading	54
3	Bone level Dyna Helix® implant design	62
4	Platform- switching and Octalock® design	62
5	Transmucosal type	62
6	TM-abutment design	62
7	Marginal bone level and peri- implant bone density measurement in the bone level type	69
8	Marginal bone level and peri- implant bone density measurement in the TM type	69
9	Pre-operative radiograph	70
10	Depth gauge	70
11	Implant placed	70

12	2M clinical	70
13	2M radiograph	70
14	4M abutment connected	71
15	4M radiograph	71
16	6M clinical	71
17	6M radiograph	71
18	12M clinical	71
19	12M radiograph	71
20	Pre-operative radiograph	72
21	Pre-operative clinical	72
22	Pre-operative clinical	72
23	Flap reflected	72
24	Osteotomy site	72
25	Implant placed	72
26	2 months clinical	73
27	2 months radiograph	73

28	4 months clinical	73
29	4 months	73
30	12 months clinical	73
31	12 months radiograph	73
32	Pre-operative radiograph	74
33	Pre-operative clinical	74
34	Pre-operative clinical	74
35	Flap reflected	74
36	Osteotomy site	74
37	Implant placed	74
38	2 months clinical	75
39	2 months radiograph	75
40	4 months	75
41	4 months	75
42	Abutment connected	75
43	Final restoration	75

44	12 months	76
45	Left side pre-operative	76
46	Left side provisional	76
47	Left side final	76
48	Left side 2 months	76
49	Left side 12 months	76
50	Relationship between marginal bone level and time in different types of implants and loading	85
51	Mean changes in marginal bone level in different implant designs and loading within each time interval	87
52	Relationship between peri- implant bone volume and time	93
53	Mean changes in peri-implant bone volume in different implant designs and type of loading within each time interval	95

List of Tables

Table	Title	Page
1	Different definitions of loading protocols	7
2	The effect of implant type on gingival index within each loading type and time interval.	79
3	The effect of implant type on plaque index within each loading type and time interval.	79
4	The effect of implant design on bleeding index within each loading type and time interval.	80
5	The effect of implant design on probing depth within each loading type and time interval.	80
6	The effect of implant design on marginal bone level within each type of loading and time interval	85
7	The effect of implant design and time interval on changes in marginal bone level within each type of loading	86
8	The effect of the type of loading on marginal bone level within each implant design and time	87
9	The effect of the type of loading on changes in marginal bone level within each implant design and time interval.	88

10	The effect of implant design on peri- implant bone volume within each type of loading and time interval	93
11	The effect of implant design and time on changes in peri-implant bone volume within each type of loading	94
12	The effect of the type of loading on peri- implant bone volume within each implant design and time interval	96
13	The effect of the type of loading on changes in peri-implant bone volume within each implant design and time interval	96

List of Abbreviations

ART	Acid-etched Roughened Titanium
BIC	Bone Implant Contact
Fig.	Figure
HA	Hydroxy Apatite
gm	gram
IAJ	Implant Abutment Junction
M	months
μm	micrometer
mm	millimeter
N cm	Newton centimeter
NS	Non-significant
P	Probability level
S.D.	Standard deviation
TPS	Titanium Plasma Spray
TM	Trans Mucosal

Contents

Review of literature1
Aim of the study55
Subjects and methods56
Results77
Discussion97
Summary 107
Conclusions and recommendations110
References111

REVIEW OF LITERATURE

Review of Literature

The restoration of missing teeth using dental implants has been widely acceptable in replacing human masticatory function.¹ Indeed, high survival rates and long-term predictability for clinically loaded endosseous implants have been long documented.^{2,3} However, increased patient expectations including reduced treatment time as well as improved esthetics and comfort, directed dental clinicians towards immediate loading of dental implants.⁴

Immediate loading of dental implants not only implies the use of a nonsubmerged, one-stage surgery, but also the loading of the recently inserted fixtures with a prosthetic restoration, either provisional definitive. Immediate implant restoration with functional loading provides better patient comfort, allows quick masticatory function and esthetics. These have commonly caused physiological, psychological or sociological challenges for patients who underwent implants treatment. Inaddition, it also eliminates the inconvenience of a second stage approach for placement of abutments. This often leads to early soft tissue healing and results in