#### TELOMERASE ACTIVITY IN CORD BLOOD

#### **Thesis**

Submitted for Partial Fulfillment of the Master Degree in Clinical Pathology

Presented by

**Asmaa Ahmed El Sayed** 

(*M.B.*, *B.Ch.*)

Supervised by

#### Prof. Dr. Hala Mohamed Farawila

Professor of Clinical&Chemical Pathology
Faculty of Medicine
Cairo University

#### Prof. Dr. Nesrine Mohamed El Gharbawi

Assistant Professor of Clinical&Chemical Pathology
Faculty of Medicine
Cairo University

#### Prof. Dr. Hala Mufeed Said

Assistant Professor of Pediatrics Faculty of Medicine Cairo University

Faculty of Medicine
Cairo University
2007

### Acknowledgment

# First and foremost thanks to **Allah**The most beneficial and merciful

I would like to express my deepest gratitude and cordial thanks to **Prof. Dr.Hala Mohamed Farawila** Professor of Clinical and Chemical Pathology,

Faculty of Medicine, Cairo University, for her continuous help. To her I wish to express my deep thanks and utmost appreciation.

My sincere appreciation and special thanks are due to **Prof. Dr.Nesrine**Mohamed El Gharbawi Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her close supervision, indispensable directions and for the time she freely gave for guiding me throughout this study.

I am extremely grateful and thankful to **Prof. Dr. Hala Mufeed Said,**Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University, for her kind supervision and generous cooperation.

To a great Father

To my Mother, the source of hope in my life

To a precious Sisters

To a special Husband

To my sweet Kids

#### Abstract

Ex-vivo expansion of haematopoietic progenitor cells from umbilical cord blood is an interesting strategy to obtain a sufficient number of transplantable cells. Telomerase may contribute to the capacity for cell replication by compensating for telomere loss. Exploring the use of different cytokine combinations in increasing cellular replicative potential through telomerase activity may be useful for in vitro expansion of haematopoietic stem cells for transplantation. In this study, expansion of cord blood mononuclear cells was done in the presence of IL-3 and stem cell factor. Telomerase activity was assessed before and after one week of culture by a modified version of the telomeric repeat amplification protocol (TRAP). Cord blood samples expressed a basal level of telomerase activity which was increased in 80% of samples after expansion. However this increase did not reach a statistically significant level. The results of this work suggest that IL-3 and stem cell factor slightly increased telomerase activity of expanded cord blood cells. However, the addition of more cytokines to the culture might be useful to reach the optimal culture conditions allowing greater induction of telomerase activity and the generation of haematopoietic progenitor cells that retain their proliferative capacity.

# **List of Contents**

# Introduction and aim of work

# Review of Literature:

| Chapter I: Haematopoietic Stem Cell Transplantation                 |    |
|---------------------------------------------------------------------|----|
| History                                                             | 1  |
| Stem cell models of haematopoiesis                                  | 3  |
| Types of hematopoietic stem cell transplantation                    |    |
| Collection of stem cells                                            | 7  |
| Conditioning regimens                                               | 11 |
| Engrafment                                                          | 12 |
| Indication for hemopoietic stem cell transplantation                | 14 |
| Outcome data                                                        | 16 |
| Complication of hematopoietic stem cell transplantation             | 20 |
| Future of hematopoietic stem cell transplantation                   | 35 |
|                                                                     |    |
| Chapter II: Cord Blood Transplantation                              | 26 |
| Introduction.  Characteristics of and stam/progenitor calls         |    |
| Characteristics of cord stem/progenitor cells                       |    |
| Collection of umbilical cord blood.                                 |    |
| Cryopreservation                                                    |    |
| Manipulation of umbilical cord blood                                |    |
| Cord blood banking.                                                 |    |
| Ex-vivo expansion of human cord blood CD34+cells.                   |    |
| Umbilical cord stem cells versus bone marrow and peripheral blood s |    |
| cells                                                               |    |
| Advantages of umbilical cord blood as hematopoietic stem cells for  |    |
| allogeneic transplantation.                                         |    |
| Disadvantages of umbilical cord blood transplantation               |    |
| Ethical Quandary                                                    |    |
| Future directions of cord blood.                                    |    |
|                                                                     |    |
| Chapter III: Telomere and Telomerase                                |    |
| History                                                             |    |
| Structure of telomere                                               | 60 |
| Telomeres and their function                                        | 61 |
| Telomeres shortening                                                | 62 |

| Telomeraseenzyme                                                 | 64  |
|------------------------------------------------------------------|-----|
| Telomerase and cellular aging                                    |     |
| Telomerase and Cell Cycle                                        | 67  |
| Telomerase in normal tissues and in Cancer                       |     |
| Telomerase in hematopoietic cells and hematological malignancies | 72  |
| Telomerase and cancer treatment.                                 | 78  |
| Results                                                          |     |
| Material and Methods                                             | .81 |
| Discussion                                                       |     |
| Summary and Conclusion                                           |     |
| References                                                       | 111 |
| Arabic summary                                                   |     |

# List of Figures

| Figure<br>number | Figure Description                                                                                                              | Page<br>number |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|
| (1)              | Principle of the Telo TAGGG Telomerase PCR ELISA <sup>PLUS</sup> .                                                              | 85             |
| (2)              | Percentage of cord blood samples showing increased telomerase activity after ex-vivo expansion                                  | 97             |
| (3)              | Percentage of cord blood samples showing increased telomerase activity after ex-vivo expansion                                  | 98             |
| (4)              | Telomerase activity of cord blood samples before and after ex-vivo expansion                                                    | 99             |
| (5)              | Correlation between telomerase activity of cord<br>blood samples before expansion and after ex-vivo<br>expansion                | 100            |
| (6)              | Correlation between basal telomerase activity in cord blood samples before expansion and fold increase after ex-vivo expansion. | 101            |

# List of Tables

| Table number | Table Description                                                                                | Page<br>number |
|--------------|--------------------------------------------------------------------------------------------------|----------------|
| number       |                                                                                                  | number         |
| (1)          | Clinical Characteristics with Various Sources of Stem Cells.                                     | 7              |
| (2)          | Common Indications for HSCT.                                                                     | 15             |
| (3)          | Five-Year Survival Data by Disease.                                                              | 16             |
| (4)          | Clinical Classification of Acute Graft-<br>versus-Host Disease According to Organ<br>Injury.     | 27             |
| (5)          | Clinical features of chronic GVHD.                                                               | 29             |
| (6)          | HPC content in UCB and BM HPC/10 <sup>5</sup> nucleated cells.                                   | 39             |
| (7)          | Examples of disorders for which Cord blood transplantation has been utilized.                    | 42             |
| (8)          | Telomerase activity in cord blood samples.                                                       | 95             |
| (9)          | Telomerase activity in cord blood samples before and after ex-vivo expansion.                    | 96             |
| (10)         | Percentage of cord blood samples showing increased telomerase activity after ex-vivo expansion.  | 97             |
| (11)         | Comparison between telomerase activity of cord blood samples before and after ex-vivo expansion. | 99             |

| (12) | Correlation between telomerase activity of cord blood samples before and after ex-vivo expansion.                               | 100 |
|------|---------------------------------------------------------------------------------------------------------------------------------|-----|
| (13) | Correlation between basal telomerase activity in cord blood samples before expansion and fold increase after ex-vivo expansion. | 101 |

# List of abbreviations

| AA       | Aplastic Anemia                                |
|----------|------------------------------------------------|
| ACD      | Anticoagulant citrate dextrose.                |
| ALL      | Acute lymphoblastic leukemia.                  |
| AMD3100  | An inhibitor of chemokine receptor 4 (CXCR4).  |
| AML      | Acute myeloid leukemia.                        |
| Anti-HCV | Anti-Hepatitis C virus                         |
| APB      | Adult peripheral blood.                        |
| BCR      | B cell antigen receptor.                       |
| BFU-E    | Burst forming unit-Erythroid.                  |
| BFU-MK   | Brust forming unit-Magkaryocyte.               |
| BM       | Bone marrow.                                   |
| BMT      | Bone marrow transplant.                        |
| СВ       | Cord blood.                                    |
| CBSCT    | Cord blood stem cell transplantation.          |
| CBSCs    | Cord blood stem cells.                         |
| CCG      | A children's cancer group study.               |
| CD       | Cluster of diffrentiation.                     |
| CFC      | Colony forming cells.                          |
| CFU-MK   | Colony forming unit- megakaryocyte             |
| CFU-GM   | Colony forming unit-Granulocyte, Macrophage    |
| CFU-GEMM | . Colony forming unit-Granylocyte, Eosinophil, |
|          | Macrophage, Megakaryocyte                      |
| CIBMTR   | Center for International Blood and Marrow      |
|          | Transplant Research.                           |
| CLL      | Chronic lymphocytic leukemia.                  |
| CML      | Chronic myeloid leukemia                       |

| CMVCytomegalovirus.                                    |    |
|--------------------------------------------------------|----|
| CNSCentral nervous system.                             |    |
| CR Complete response.                                  |    |
| CSCCord stem cell.                                     |    |
| DCsDendritic cells.                                    |    |
| DIG Digoxigenin.                                       |    |
| DMSODimethyl sulfoxide.                                |    |
| DNADeoxyribose Nucleic Acid.                           |    |
| EBV-HLH Epstein-Barr virus associated hemophagocytic   |    |
| lymphohistiocytosis.                                   |    |
| ELISA The Enzyme-Linked ImmunoSorbent Assay.           |    |
| EpoErythropoietin.                                     |    |
| ESTEver short telomere.                                |    |
| FLFetal liver.                                         |    |
| G-CSFGranulocyte colony stimulating factor.            |    |
| GM-CSFGranulocyte-macrophage colony stimulating factor | r. |
| GVHDGraft versus host disease                          |    |
| GVLGraft versus leukemia effect                        |    |
| HBsAg Hepatitis B surfes antigen                       |    |
| HCAbHepatitis C antibody                               |    |
| HCLHairy cell leukemia.                                |    |
| HEPA High Efficiency Particulate Air (filter/mask).    |    |
| HESHydroxyethyl starch                                 |    |
| HLA Human leucocytic antigen                           |    |
| HPCHaematopoietic progenitor cell.                     |    |
| HRP Horseradish peroxidase                             |    |
| HSCHematopoietic stem cell                             |    |
| HSCTHematopoietic Stem Cell Transplantation            |    |
| HSPCHematopoietic stem/progenitor cells                |    |
|                                                        |    |

| hTERT     | . Human Telomerase Reverse Transcriptase      |
|-----------|-----------------------------------------------|
| hTR       | .Human telomerase RNA component               |
|           | Insulin-like growth factor-1.                 |
| IS        |                                               |
| IL-2      | Interleukin-2.                                |
| IL-3      | Interleukin-3.                                |
| IL-4      | Interleukin-4.                                |
| IL-5      | Interleukin-5.                                |
| IL-6      | Interleukin-6.                                |
| Kbp       | Kilobasepairs.                                |
| LTC-ICs   | Long term culture intiating cells.            |
| MCL       | Mantle cell lymphoma.                         |
| MDS       | Myelodysplastic Syndrome.                     |
| MoAb      | Monoclonal antibody.                          |
| MM        | Multiple myloma.                              |
| MMF       | Mycophenolate mofetil                         |
| MNCs      | Mononuclear cells.                            |
| MTP       | . Microtiter plate.                           |
| NA        | Not applicable.                               |
| NMDP      | The National Marrow Donor Program.            |
| PB        | Peripheral blood.                             |
| PBSCT     | . Peripheral blood stem cell transplantation. |
| PCR       | Polymerase chain reaction.                    |
| PNAs      | Peptide nucleic acids.                        |
| RBCs      | Red blood Corpuscle.                          |
| rh G-CSF  | Recombinant human granulocyte colony-         |
|           | stimulating factor.                           |
| rh GM-CSF | Recombinant human granulocyte-macrophage      |
|           | colony-stimulating factor.                    |

| rh SCFRecombinant human stem cell fact | or. |
|----------------------------------------|-----|
|----------------------------------------|-----|

RNA ......Ribose Nucleic Acid.

SCF..... Stem cell factor.

STF..... flt3/flk2 ligand.

TBI .....Total-body irradiation.

TCR..... T cell receptor.

TMB.....Tetramethylbenzidine.

TNF...... Tumor necrosis factor.

TP1..... Telomerase-associated protein 1.

Tpo..... Thrombopoietin.

TRAP.....Telomeric repeat amplification protocol.

TRF.....Telomere restriction fragments.

TrflP.....Telomeric repeat binding factors-1.

Trf2P.....Telomeric repeat binding factors-2.

TRLI.....Transplantation-related lung injury.

UCBT..... Umbilical cord blood transplantation.

VOD...... Veno-occlusive disease.

WBC...... White blood cell.

# Introduction And Aim of work

#### **Introduction & Aim of the Work**

Stem cells possess the unique ability of self-renewal and multilineage differentiation. These combined properties are reflected in the ability of a hematopoietic stem cell (HSC) to completely and durably reconstitute hematopoiesis of a myeloablated recipient and maintain it throughout the entire life span (*Kondo et al.*, 2003).

HSC self-renewal is not a perfect process and daughter cells have progressively reduced proliferative capacity, due in part to progressive telomere erosion with each cell division. The length of telomeres decreases with increase in age in vivo and with cell division in vitro in haemopoietic stem cell (*Vaziri et al., 1994*). This, in turn, leads to proliferative senescence that can be observed both in vivo and in vitro.

Telomeres are structures at the end of eukaryotic chromosomes that protect chromosomes from degradation, fusion, and recombination. In mammalian cells, they consist of hexanucleotide (TTAGGG) repeats and several associated protein components. In the absence of compensatory mechanisms, dividing cells undergo gradual telomere erosion. When telomeres reach a critical degree of shortening, cells recognize this as DNA damage and initiate proapoptotic programs or enter senescence (*Granger et al.*, 2002).

Human telomerase, an RNA-dependent DNA polymerase, can compensate for the loss of telomere length by synthesizing new telomeric repeats (TTAGGG) n, complimentary to human telomerase RNA component (hTR) (*Feng et al.*, *1995*). Telomerase is a ribonucleoprotein complex consisting of an RNA template complementary of telomeric