

Cairo University Institute of Statistical Studies and Research Department of Computer and Information Sciences

A SECURITY POLICY BASED ON DATA INTEGRITY VERIFICATION

A thesis submitted to the Department of Computer and Information Sciences, Institute of Statistical Studies and Research, Cairo University, in partial fulfillment of the requirements for the degree of Master of Science in the Computer and Information Sciences.

By

Omar Hussein Sayed Mohamed

Supervised By

Prof. Dr. Eng. Osman Hegazy Mohamed

Department of Information Systems Faculty of Computers and Information - Cairo University

Prof. Dr. Amany Mousa Mohamed

Department of Applied Statistics Institute of Statistical Studies and Research - Cairo University

Dr. Eng. Fatma A. El-Licy

Department of Computer and Information Sciences Institute of Statistical Studies and Research - Cairo University

STATEMENT

I certify that this work has not been accepted in substance for any academic degree and is not being concurrently submitted in candidature for any other degree.

Any portions of this thesis for which I am indebted to other sources are mentioned and explicit references are given.

Student: Omar Hussein Sayed Mohamed

APPROVAL SHEET

A SECURITY POLICY BASED ON DATA INTEGRITY VERIFICATION

MASTER DEGREE THESIS

Submitted By Omar Hussein Sayed Mohamed

A thesis submitted to the Department of Computer and Information Sciences, Institute of Statistical Studies and Research, Cairo University, in partial fulfillment of the requirements for the degree of Master of Science in the Computer and Information Sciences. This thesis has been approved by:

Name	Signature
Prof. Dr. Eng. Osman Hegazy Mohamed	
Prof. Dr. Amany Mousa Mohamed	
Prof. Dr. Eng. Tarek Abdel Megeed Abdel Aziz	
Prof. Dr. Eng. Bahaa Eldin Mohamed Hasan	

Date: / / 2009

ıı ıı

Dedication

Words can never express my deep gratitude to my dear Mother. She continuously invokes ALLAH to provide me with success and guidance. I exclusively dedicate this thesis, and any success I achieve to my dear Mother.

Acknowledgement

All gratitude is due to ALLAH who made this success possible. I am deeply grateful to my dear Mother, Father, and Brother for their continuous care, encouragement, and endless support.

I was proud to work under the supervision of Prof. Dr. Eng. Osman Hegazy; the main supervisor. I wish to express my sincere thanks for his guidance, valuable advices, and extensive support.

Deepest thanks to Prof. Dr. Amany Mousa for her supervision, and support.

I wish to express my special thanks and appreciation to Dr. Eng. Fatma A. El-Licy for her supervision, fruitful technical directions, and constructive advice.

Great thanks to Dr. Eng. Hesham Hefny; the head of computer and information sciences department, and the staff members, for their assistance and kind help.

Abstract

Data is valuable, only, when it is correct and accurate. In this thesis, focus is driven towards safeguarding stored data integrity from new malicious software (Malware) attacks, and unauthorized modification attacks committed by insiders. Computer crime and security surveys, however, revealed that, despite of the wide use of anti-virus software and Access Control Lists (ACLs) security mechanisms to counter those two types of threats, they are insufficient and ineffective. Therefore, this work is motivated to minimize the negative effects of such attacks.

This thesis is devoted to analyze, design, and implement a security mechanism to verify data integrity. This mechanism forms an additional data security layer underneath that of ACLs to detect and prevent unauthorized modification to critical configuration and data files. It integrates Biba strict integrity mandatory access control security policy with the *verification by comparison* data integrity assurance method. It aims at detecting the existence of new Malware, limiting its damaging effects, and preventing usage of ill-gotten access rights.

The mechanism's security functional requirements were mapped into those mentioned in standard number 15408 produced by the International Organization for Standardization (ISO). This standard addresses protection of information from unauthorized modification and disclosure. It provides a common set of requirements for the security functions of information technology products and systems. Such mapping insured -to a high extent-that the mechanism fulfilled standardized functionality.

Key Words: Data Security, Security Policy, Multilevel Security, Data Integrity Verification, Access Control, ACL, DAC, MAC, ISO 15408.

CONTENTS

ABSTRACT	vii
CONTENTS	vii
LIST OF ABBREVIATIONS	X
LIST OF SYMBOLS	xii
LIST OF FIGURES	xii
LIST OF TABLES	XV
CHAPTER 1: INTRODUCTION	1
1.1. BACKGROUND	
1.2. THESIS TOPIC, SCOPE, AND CONTRIBUTION	
1.3. MOTIVATION AND PROBLEM SPECIFICATION	
1.4. RESEARCH QUESTIONS	
1.5. THESIS OBJECTIVES	
1.6. THESIS ORGANIZATION	
CHAPTER 2: DATA SECURITY FUNDAMENTALS	
2.1. DATA SECURITY ASPECTS	
2.1.1. Data Security Facets	
2.1.2. Data Integrity Higher Precedence Over Confidentiality and Availability	
2.1.3. Data Security Concepts	
2.2. DATA SECURITY PLAN PHASES	14
2.2.1. Inspection Phase	14
2.2.2. Protection Phase	
2.2.3. Detection Phase	
2.2.4. Reaction Phase	
2.2.5. Reflection Phase	
CHAPTER 3: SECURING DATA INTEGRITY	21
3.1. THREATS	
3.1.1. New Malware's Attacks	
3.1.2. Unauthorized Access Attacks Committed by Insiders	
3.2. SAFEGUARDS	27
3.2.1. Anti-Virus Software	27
3.2.2. Access Control Security Policies, Models, and Mechanisms	
3.3. DATA INTEGRITY ASSURANCE METHODS	34
3.3.1. Verification	34
3.3.2. Limited Use	
CHAPTER 4: VULNERABILITIES IDENTIFICATION AND BIBA SECURITY	
MODEL	36
4.1. VULNERABILITIES IDENTIFICATION	
4.1.1. Anti-virus Software Gap	
4.1.2. ACLs Operation and Misuse	
4.2. BIBA SECURITY MODEL	40
4.2.1. Security Policies Supported by Biba Model	41
4.2.2. Chosen Security Policy	
CHAPTER 5: A PROPOSED SECURITY MECHANISM TO VERIFY DATA	- •
INTEGRITY	46
5.1. MECHANISM OBJECTIVES	
5.1.1. Detect the Existence of New Malware	47
5.1.2. Limit New Malware's Damaging Effects	
5.1.3. Prevent Using ILL-Gotten Access Rights	
5 2 DIG AND ISO 15408 INTERNATIONAL STANDARD	

5.3. DIG's PROCESS MODELING	54
5.3.1. Functional Decomposition Diagrams	54
5.3.2. Data Flow Diagrams	62
CHAPTER 6: MECHANISM DEMONSTRATION	
CHAPTER 7: CONCLUSIONS AND FUTURE WORK	92
7.1. SUMMARY OF THESIS CONCLUSIONS AND CONTRIBUTION	93
7.1.1. Conclusions	93
7.1.2. Contribution	94
7.2. DIRECTION FOR FUTURE WORK	95
REFERENCES	96

LIST OF ABBREVIATIONS

A Audit log

ACL Access Control List

ACSP Access Control Security Policy

BLP Bell-Lapadula C Categories

CERT Computer Emergency Response Team

CSI Computer Security Institute

D Data store

DAC Discretionary Access Control

DIG Data Integrity Guard
DOS Denial Of Service

DSF Data integrity guard Security Functions

FBI Federal Bureau of Investigations
FDP Functional user Data Protection

FDP_ACC Access Control policy
FDP ACF Access Control Functions

FDP ITC Import from outside Target of evaluation security functions Control

FDP SDI Stored Data Integrity

FIA Functional Identification and Authentication

FIA_ATD user Attribute Definition

FMT Functional security Management FMT_MSA Management of Security Attributes

FPT Functional Protection of the Target of evaluation security functions

FPT RVM Reference Mediation

I/O Input/Output

ICSA International Computer Security Association

IDS Intrusion Detection Software

IL Integrity Labelsil an integrity labelIP Internet Protocol

ISO International Organization for Standardization

IT Information Technology

L security Levels
1 a security level

LAN Local Area Network

MAC Mandatory Access Control

Malware Malicious software

MLS Multilevel Security

O Objects
o an object
p power set

RA Risk Analysis

S Subjects s a subject

SF Security Function

SFP Security Function Policy

SL Security Labels sl a security label

TOE Target Of Evaluation

TSC Target of evaluation security functions Scope of Control

TSF Target of evaluation Security Functions
TSP Target of evaluation Security Policy

V Integrity Levels v an integrity level

LIST OF SYMBOLS

- % Percent
- \sum Summation
- \$ Dollars
- \forall For all
- ∈ Belongs to
- \wedge And
- ⇒ Then
- ⇔ If and only if
- ≥ Dominates
- > Greater than
- < Less than
- = Equals
- | | Cardinality measure
- * Cartesian product
- Φ Empty set

LIST OF FIGURES

Figure 1.1:	Thesis's scope
0	Thesis's scope
Figure 1.2: Figure 1.3:	Dollar amount of losses by type of attack during 2005 [Csi and Fbi, 2005] 5
Figure 1.4:	
rigure 1.4.	Used security technologies by survey respondents during 2005 [Csi and Fbi, 2005]
Figure 1 5.	Used security technologies by survey respondents during 2006 [Csi and Fbi,
Figure 1.5:	
Figure 2.1.	2006]
Figure 2.1:	
Figure 2.2: Figure 2.3:	Data security facets
Figure 2.4:	Data security design levels and security enforcement direction
_	, , , , , , , , , , , , , , , , , , ,
Figure 2.5:	Security policy importance as stated by year 2006 percentage of survey
Figure 2.6.	respondents [Csi and Fbi, 2006] System's states partitioned by the access control security policy 1
Figure 2.6:	~) ~ · · · · · · · · · · · · · · · · ·
Figure 2.7:	The security policy violation effect on system's states
Figure 2.8:	Access control security mechanism's complete mediation 1
Figure 3.1:	Number of reported security incidents from 1999 to 2003 [Cert, 2003]
Figure 3.2:	Virus program flowchart
Figure 3.3:	Basis for access requests evaluation in MLS
Figure 3.4:	An Access Control Matrix
Figure 3.5:	ACLs example 3
Figure 3.6:	Capabilities Lists example 3
Figure 3.7:	Data flow direction in Bell-LaPadula model
Figure 3.8:	Allowed actions in BLP model
Figure 4.1:	Anti-virus software gap
Figure 4.2:	Defenseless ACLs in the face of new Malware's attacks
Figure 4.3:	Defenseless ACLs in the face of illegal forwarding of permissions
Figure 4.4:	Lax enforcement of the organization's security policy
Figure 4.5:	Integrity star property (No-Write-Up) 4
Figure 4.6:	Simple integrity property (No-Read-Down)
Figure 4.7:	Data flow direction in Biba strict integrity access control security policy
Figure 4.8:	Pathway to the proposed security mechanism 4
Figure 5.1:	DIG's ability to detect the existence of new Malware and limit its damaging
S	effects
Figure 5.2:	DIG's ability to prevent using ill-gotten access rights
Figure 5.3:	DIG's initial functional decomposition diagram
Figure 5.4:	Functional decomposition diagram of "Detect Existence of New Malware"
	function
Figure 5.5:	Functional decomposition diagram of "Generate Integrity Labels" sub-function 5.
Figure 5.6:	Functional decomposition diagram of "Import Files Golden States" sub-
	function 5
Figure 5.7:	Functional decomposition diagram of "Verify Files Data Integrity" sub-
	function
Figure 5.8:	Full functional decomposition diagram of "Detect Existence of New Malware"
	function
Figure 5.9:	Functional decomposition diagram of "Prevent Insiders Unauthorized
- 10	Modification" function
Figure 5.10:	Functional decomposition diagram of "Assign Integrity Labels to Users" sub-
	function

Figure 5.11:	Functional decomposition diagram of "Enforce Biba Security Policy Rules"
E: #10	sub-function
Figure 5.12:	Full functional decomposition diagram of "Prevent Insiders Unauthorized
F: #40	Modification" function 6
Figure 5.13:	DIG's full functional decomposition diagram
Figure 5.14:	DIG's context diagram 6
Figure 5.15:	Data flow diagram of DIG's two main process
Figure 5.16:	Data flow diagram of "Detect Existence of New Malware" process
Figure 5.17:	Data flow diagram of "Generate Integrity Labels" sub-process
Figure 5.18:	Data flow diagram of "Import Files Golden States" sub-process
Figure 5.19:	Data flow diagram of "Verify Files Data Integrity" sub-process
Figure 5.20:	Data flow diagram of "Prevent Insiders Unauthorized Modification" process 6
Figure 5.21:	Data flow diagram of "Assign Integrity Labels to Users" sub-process
Figure 5.22:	Data flow diagram of "Enforce Biba Security Policy Rules" sub-process
Figure 5.23:	DIG's full data flow diagram
Figure 6.1:	DIG's main screen
Figure 6.2:	Automatic integrity labels generation 7
Figure 6.3:	Screen used to capture critical file's Golden state
Figure 6.4:	Locate and choose a critical file to monitor
Figure 6.5:	Captured critical file's Golden state
Figure 6.6:	Save critical file's Golden state
Figure 6.7:	Successful saving of critical file's Golden state
Figure 6.8:	Locate and choose the Golden state file
Figure 6.9:	Retrieve critical file's Golden state 7
Figure 6.10:	Assign an integrity label to a user
Figure 6.11:	Successful integrity label assignment to the first user
Figure 6.12:	Successful integrity label assignment to the second user
Figure 6.13:	Successful integrity label assignment to the third user
Figure 6.14:	Data integrity verification by comparison flow chart
Figure 6.15:	Locate and choose a critical file to verify its data integrity
Figure 6.16:	Capture and display critical file's current state
Figure 6.17:	Verification result for critical file's creation date and time security attribute 8
Figure 6.18:	Verification result for critical file's last modification date and time security attribute
Figure 6.19:	Verification result for critical file's last read access date and time security
1184110 01131	attribute
Figure 6.20:	Verification result for critical file's size security attribute
Figure 6.21:	Verification result for critical file's integrity label security attribute
Figure 6.22:	File's accumulated data integrity verification result
Figure 6.23:	Read access allowed (file's integrity label is the same as user's integrity
g	label)
Figure 6.24:	Write access allowed (user's integrity label dominates file's integrity label) 8
Figure 6.25:	Read access allowed (file's integrity label dominates user's integrity
S	label)9
Figure 6.26:	Write access denied (user's integrity label does not dominate file's integrity
F: 65=	label)
Figure 6.27:	Read access denied (dominance relationship does not exist)
Figure 6.28:	Write access denied (dominance relationship does not exist)

LIST OF TABLES

Table 1.1:	Losses incurred by types of attacks under study and their contribution in the	
	annual total amount of losses [Csi and Fbi, 2005], [Csi and Fbi, 2006]	4
Table 1.2:	Used security technologies under study by percentage of respondents	
	[Csi and Fbi, 2005], [Csi and Fbi, 2006]	4
Table 3.1:	Types of threats according to their source	22
Table 3.2:	External vs. internal threats	22
Table 3.3:	Comparison between Viruses, Worms and Trojan Horses	26
Table 3.4:	Authorization Table example	29
Table 3.5:	MAC vs. DAC	34
Table 4.1:	Problems found in Non-Strict Integrity policies	44
Table 5.1:	Required access rights to be enforced	48
Table 5.2:	Reasons for ensuring enforcement of required access rights	49
Table 5.3:	DIG's complete access control	50
Table 5.4:	DIG's security attribute based access control (1)	51
Table 5.5:	DIG's security attribute based access control (2)	51
Table 5.6:	DIG's import of user data with security attributes	51
Table 5.7:	DIG's stored data integrity monitoring	52
Table 5.8:	DIG's stored data integrity monitoring and action	52
Table 5.9:	DIG's user attribute definition	52
Table 5.10:	DIG's management of security attributes	53
Table 5.11:	DIG's Non-bypassability of the TSP	53
Table 6.1:	Mandatory access rights required to be enforced	88
Table 6.2:	Assigned integrity labels	88