PREDICTIVE VALUE OF SEVERAL BIOCHEMICAL MARKERS FOR NEURODEVELOPMENTAL OUTCOME AFTER BIRTH ASPHYXIA

Essay

Submitted For Partial Fulfillment of Master Degree in Pediatrics

By

Ezzat Mohamed Ibrahim

(M.B.B.Ch)

Under Supervision of

Prof. Dr. Iman Abdel Salam Seoud

Prof. of Pediatrics Cairo University

Prof. Dr. May Ahmed Khairy

Assistant Prof. of Pediatrics Cairo University

Dr. Reem Mahmoud Badr EL Deen

Lecturer of Pediatrics Cairo University

Cairo University
Faculty of Medicine
2007

بسم الله الرحمن الرحيم

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صدق الله العظيم

سورة البقرة - آية ٣٢

Acknowledgments

First and foremost, may all thanks and praise be to **GOD**, the most merciful. Without his blessing, this work would never have existed.

I would be extremely grateful and thankful to **Prof. Dr. Iman Abd El Salam Seoud,** Professor of Pediatrics, Faculty of Medicine, Cairo

University for her continuous encouragement, her valuable support and professional experience. It has been an honor and privilege to work under her generous supervision.

My deepest appreciation goes also to **prof.Dr. May Ahmed Khairy,** Assistant Professor of Pediatrics, Faculty of Medicine, Cairo

University for her great support in producing this study.

I owe special debt of gratitude to **Dr. Reem Mahmoud Dadr EL Deen,** Lecturer of Pediatrics, Faculty of Medicine, Cairo University, without her great help, guidance and encouragement, this study could not have come to light.

Abstract

Perinatal asphyxia continues to be a major cause of neonatal morbidity, mortality and neurodevelopmental disability.

In spite of major advance in monitoring technology and knowledge of fetal and neonatal pathologies, perinatal asphyxia or, more appropriately hypoxic-ischemic encephalopathy (HIE), remains a serious condition, causing significant mortality and long-term morbidity.

Understanding the timing of the insult and contributing factors may be improved by adequate documentation of general medical and obstetric factors, determination of pH and blood gases in the cord blood and neonatal Neuro- imaging.

Other diagnostic tools of crucial importance to predict the neurologic outcome after cerebral injury are measurements of markers of perinatal brain injury in biological fluids with the aim of improving the ability to detect fetuses and newborns at risk of brain injury at an earlier stage, when the window for therapeutic actions is still open.

The aim of the work is to provide insight into the role of different biochemical markers and their reliability as indicators of hypoxic ischemic encephalopathy and to show whether detection of elevated serum concentrations of these proteins reflects long term neurodevelopmental impairment or not.

Key Words: Perinatal asphyxia – Hypoxic-ischemic encephalopathy – Hypoxia – Ischemia – Protein S100 B – Creatine kinase BB – Neuron specific enolase – Erythropoietin – Interleukin 18

LIST OF CONTENTS

Title	Page
LIST OF CONTENTS	I
LIST OF TABLES	II
LIST OF FIGURES	III
LIST OF ABBREVIATIONS	IV
INTRODUCTION AND AIM OF THE WORK	1
CHAPTER 1: PERINATAL ASPHYXIA	
-Definition and Background	3
-Risk Factors	10
-Etiology	13
-Systemic Effects	15
CHAPTER 2: HYPOXIC ISCHEMIC ENCEPHALOPATHY	
-Background	21
-Epidemiology and incidence of Perinatal Asphyxia	22
-Pathophysiology of Perinatal Asphyxia	23
-Neuropathology of Perinatal Asphyxia	31
-Clinical Diagnosis of Perinatal Asphyxia	35
-Laboratory Diagnosis of Perinatal Asphyxia	40
-Radiological Diagnosis of Perinatal Asphyxia	42
-Management of Perinatal Asphyxia	49
-Recent trends in management of Perinatal Asphyxia	59
-Outcome Predictors in Perinatal Asphyxia	63
CHAPTER 3: BIOCHEMICAL MARKERS OF ASPHYXIA	
-S100 B Protein	68
-Creatine Kinase	76
-Neuron-Specific Enolase	82
-Erythropoietin	86
-Urinary Lactate: Creatinine Ratio	90
-Interleukin-18	92
SUMMARY AND RECOMMENDATIONS	94
REFERENCES	96
ARABIC SUMMARY	I

LIST OF TABLES

Table	Title		
No			
1.	Essential criteria of perinatal asphyxia	4	
2.	Normal blood gas values in term newborn	4	
3.	Types of acidemia	5	
4.	Apgar scoring system	6	
5.	Interpretation of Apgar score	6	
6.	Factors affecting the Apgar score	8	
7.	Risk Factors of Perinatal Asphyxia	12	
8.	Relative frequencies of systemic abnormalities	16	
	and different organs injuries in perinatal		
	asphyxia		
9.	The systemic effects of perinatal asphyxia	20	
10.	Hypoxic ischemic brain damage in the fetus and	31	
	neonate		
11.	Sarnat and Sarnat Stages of HIE	38	
12.	Normal values of creatine kinase and creatine	79	
	kinase isoenzymes at different ages		
13.	Causes of elevated creatine kinase isoenzymes	81	

LIST OF FIGURES

Figure	Title	
No		
1.	Term baby born by difficult vacuum extraction. (MRI was performed on day 2 of life) (a) Axial Tl-weighted image (b) T2-weighted image (c) DW1 image (d) Single voxel proton MRS	44
2.	Term baby with a history of birth asphyxia. (MRI was performed at 1 month of age) (a)Axial T2-weighted image at the level of the basal ganglia (b) coronal fluid-attenuated inversion recovery (FLAIR) image	45
3.	Term baby with a history of meconium aspiration and birth asphyxia. (MRI was performed at day 6 of life) (a) Axial T1-weighted image (b) Axial DWI image	45

LIST OF ABBREVIATIONS

¹ H NMR	Proton nuclear magnetic resonance			
AAP	American Academy of Pediatrics			
ACOG	American College of Obstetricians and Gynecologist			
ADH	Antiduretic hormone			
ADP	Adenosine di phosphate			
ALT	Alanine transaminase			
AMP	Adenosine mono phosphate			
AMPA-QA	A- amino-3- hydroxyl-5-methyl-4-isoxazole propionate			
APUD	amine precursor uptake and decarboxylation			
AST	Aspartate transaminase			
ATP	Adenosine triphosphate			
AVP	Arginine vasopressin			
B2M	B2 microgloblin			
BBB	Blood Brain Barrier			
CA	Cardiac arrest			
Ca+	Calcium			
CAMP	Cyclic adenosine mono phosphate			
CBF	Cerebral blood flow			
CK-BB	Creatine kinase BB			
Cl-	Chloride			
CNS	Central nervous system			
СО	Carbon monoxide			
СОР	Cardiac out put			
СР	Cerebral Palsy			
CSF	Cerebrospinal fluid			

CT	Computerized tomography scan		
CTG	Cardiotocography		
DIC	Disseminated intravascular coagulopathy		
DNA	Deoxy ribonucleic acid		
EEG	Electroencephalography		
EPO	Erythropoietin		
GFAP	fibrillary acidic protein		
GGT	Gamma glutemyl Transferase		
GIT	Gastrointestinal tract		
HbCO	Carboxy hemoglobin		
НІ	Hypoxia ischemia		
HIE	hypoxic ischemic encephalopathy		
HIF-1	Hypoxia inducible factor 1		
HIF-2	Hypoxia inducible factor 2		
HIF HMAO	hexamethylaminoxine		
НО	Heme oxygenase		
HX	Hypoxanthine		
ICH	Intracranial hemorrhage		
IFN-	Interferon		
IGF-1	Insulin-like growth factor 1		
IL-18	Interleukin 18		
IL-6	Interleukin 6		
IMP	iodinated phetamine		
IPPV	intermittent positive pressure ventilation		
IUGR	Intrauterine growth retardation		
KA	Kainic acid		
LBW	Low birth weight		
LDH	Lactate dehydrogenase		

mm Hg	mm mercury			
MRI	Magnetic resonance imaging			
MRS	Magnetic resonance spectroscopy			
Na+	Sodium			
NK	Natural killer cells			
NMDA	N-methyl-D-aspartate			
NO	Nitric oxide			
NOS	Nitric oxide synthase			
NSE	Neuron specific enolase			
P.Cr.	Phospho creatine			
PET	Positron emission tomography			
Pi	Inorganic phosphate			
PT	Prothrombine time			
PTT	Partial thromboplastin time			
PVL	Periventricular leukomalacia			
QA	Quisqualic acid			
S-100B	S100 protein			
SPECT	Single photon emission computed tomography			
Tc99	Technetium 99			
TCK	Total creatine kinase			
Th1	T helper 1			
TNF	Tumor necrosis factor			
US	Ultrasound scan			
SIADH	Inappropriate secretion of antidiuretic hormone			

INTRODUCTION AND AIM OF THE WORK

Perinatal asphyxia continues to be a major cause of neonatal morbidity, mortality and neurodevelopmental disability (*Thorngren et al.*, 2003).

In spite of major advance in monitoring technology and knowledge of fetal and neonatal pathologies, perinatal asphyxia or, more appropriately hypoxic-ischemic encephalopathy (HIE), remains a serious condition, causing significant mortality and long-term morbidity. HIE is an acquired syndrome characterized by clinical and laboratory evidence of acute brain injury due to asphyxia (i.e., hypoxia and acidosis) (*Raju*, 2006).

Neonatal brain injury occurs most frequently after a perinatal hypoxic-ischemic insult. Current data suggest that about 2 to 5 of 1,000 live births in United States and more so in developing countries experience a brain injury. Approximately 20% to 40% of infants who survive the brain injury develop significant neurological and developmental impairment (*Badr Zahr and Purdy*, 2006).

Contribution of asphyxia at birth to cerebral palsy in infants born at term varies from 8% to 28%. Preterm birth accounts for most cases of perinatal mortality and about 40% of neurologically handicapped children. In preterm infants, 60% of neurologic handicaps are attributable to peri/neonatal events, 10% are of antenatal origin and 30% are of generally unknown origin. In infant born at term, 50% of cases of cerebral palsy have a prenatal etiology, 36% are of peri/neonatal origin, and 14% of cases are of unknown etiology (*Michetti and Gazzolo, 2002*).

School-aged children with a history of moderately severe HIE, 15-

20% had significant learning difficulties, even in the absence of obvious signs of brain injury. All children who have moderately severe or severe HIE as infants should be monitored well into their school-age years (*Zahra and Moataza*, 2001).

Target organs of perinatal asphyxia include the brain, heart, lung, kidney, bowel and bone marrow. The most frequent abnormalities in perinatal asphyxia involve the kidney (50%) followed by the central nervous system (28%). Understanding the timing of the insult and contributing factors may be improved by adequate documentation of general medical and obstetric factors, determination of pH and blood gases in the cord blood and neonatal Neuro- imaging (*Volpe*, 2001).

Other diagnostic tools of crucial importance to predict the neurologic outcome after cerebral injury are measurements of markers of perinatal brain injury in biological fluids with the aim of improving the ability to detect fetuses and newborns at risk of brain injury at an earlier stage, when the window for therapeutic actions is still open. (Nagdyman et al., 2001).

Previously published studies demonstrated that S-100B, CK-BB and NSE are reliable indicators of hypoxic ischemic encephalopathy after birth asphyxia; whether detection of elevated serum concentration of these proteins reflects long term neurodevelopmental impairment remains to be investigated (*Nagdyman et al.*, 2003).

Aim of the Work

To provide insight into the role of different biochemical markers and their reliability as indicators of hypoxic ischemic encephalopathy and to show whether detection of elevated serum concentrations of these proteins reflects long term neurodevelopmental impairment or not.

Perinatal Asphyxia

Definition

Perinatal asphyxia is an insult to the fetus or the newborn due to lack of oxygen (hypoxia) and / or lack of perfusion (ischemia) to the various organs (*Vannucci and Hagberg*, 2004).

Hypoxemia is defined as diminished oxygen content of blood. Ischemia is characterized by reduced blood perfusion in a particular tissue bed. In most instances, during the perinatal period, hypoxemia or ischemia or both occur as a result of asphyxia which denotes an impairment in gas exchange, that results not only in a deficit of oxygen in the blood but also an excess of carbon dioxide and thereby acidosis (*Lynam and Verklan*, 2004).

Volpe (2001) concluded that ischemia is more important than hypoxia. With ischemia, the brain lacks a supply of both oxygen and glucose which increase the likelihood of brain injury.

Concerning definition of perinatal asphyxia there is no single tool or test which can yield a precise definition, but the *American Academy of Pediatrics (AAP) and the American College of Obstetrics and Gynecology (ACOG) (2006)* defined certain criteria that's to be present to confirm the occurrence of perinatal asphyxia and predict the possibility for resultant neurologic deficits (table 1). In cases in which such evidence is lacking, it cannot be concluded that perinatal asphyxia exists.

Table (1): Essential criteria of perinatal asphyxia

- 1. Profound metabolic or mixed acidemia (pH<7.00) on an umbilical cord arterial blood sample.
- 2. Persistence of an Apgar score of 0 to 3 > 5 minutes.
- 3. Clinical neurologic sequelae in the immediate neonatal period (e.g., seizure, hypotonia, coma or HIE).
- 4. Evidence of multiorgan system dysfunction in the immediate neonatal period.

(AAP and ACOG, 2006).

1. Acidemia

In utero, varying degree of hypoxia and transient interference with maternal fetal respiratory exchange are common in all labors (Table 2). However, if significant hypoxemia occurs, the fetus will utilize anaerobic glycolysis to meet its energy needs. The subsequent formation of non volatile acids, such as lactic acid will result in a decrease in the blood pH of the fetus and lactic acidosis. This can be classified as respiratory, metabolic or mixed acidemia (table 3) (*Stoll and Kliegman*, 2004).

Table (2): Normal blood gas values in term newborn

	At birth			At age		
	Materna	Umbilical	Umbilical	10 min	30 to 60	5 hr
	1	vein	artery		min	
	artery			umb.artery	umb.artery	
PO ₂	95	27.5	16	50	54	74
PCO ₂	32	39	49	46	38	35
рН*	7.4	7.32	7.24	7.21	7.29	7.34

(Snyder and Cloherty, 2004).

pH*: a scalp pH in labor of 7.25 or above is considered normal.

The normal umbilical artery pH is 7.25 to 7.35, but a pH 7.25 to 7.20 is considered pre acidosis and < 7.20 is considered acidosis.

Table (3): Types of acidemia

a. Respiratory acidemia	PCO ₂ is high
	HCO ₃ is normal
b. Metabolic acidemia	PCO ₂ is normal
	HCO ₃ is low
c. Mixed acidemia	PCO ₂ is high
	HCO ₃ is low

(Borruto et al., 2006).

2. Apgar score

In 1952, Dr Virginia Apgar devised a scoring system that was a rapid method of assessing the clinical status of the newborn infant at 1 minute of age and the need for prompt intervention to establish breathing (*Apgar*, 1953).

The Apgar score is used to assess the state of the newborn during the first critical minutes of life and comprises 5 components: heart rate, respiratory effort, muscle tone, reflex irritability, and color, each of which is given a score of 0, 1, or 2. Each component of the Apgar score carries the same weight in the assessment and therefore contributes equally to the total score. The most important of the signs is the heart rate which indicates life or death. Respiratory effort, tone and reflex irritability, were found to closely correlate with each other and with total score. Color correlated most poorly among the other components (*AAP and AHA*, 2005).

Apgar scoring system can be summarized as shown in (Table 4).