Apoptosis and abnormal phagocytic function of neutrophils in chronic uraemic patients

Thesis For Partial Fulfillment of MD In InternalMedicine

Submitted by

HUSSEIN SAEED AL-FESHAWI

M.Sc.

Principle Supervisor

PROF. OMAR YEHIA EL-KHASHAB

Professor of Internal Medicine
Cairo University

Supervisors

PROF. HALA MOHAMMED FARAWELA

Professor of Clinical Pathology

Cairo University

Dr. MAYSSA IBRAHIM ALY
Ass. Prof of Internal Medicine
Cairo University

Faculty of Medicine

Cairo University

2007

Abstract

The increased incidence of bacterial infections among patients with renal failure suggests that "professional" phagocytes such as neutrophils are functionally impaired. This dysfunction is multifactorial and not fully understood and has been ascribed to uremic toxins, hemodialysis and others.

The aim of the current study was to evaluate apoptosis and phagocytosis in uremic neutrophils; neutrophils of hemodialysis patients and those who are not dialyzed yet, and apoptosis inducing activity of uremic plasma and to investigate the correlation between apoptosis and phagocytic function of neutrophils in uremic patients.

The study was conducted on forty patients ranging (40-60) years old and divided into four groups; 10 chronic hemodialysis patients for 26.2 months, 10 chronic renal failure patients not hemodialyzed yet, 10 normal healthy volunteers as a control group, and 10 normal healthy volunteers as a control group for normal healthy volunteers.

Neutrophils from hemodialysis patients, non hemodialysis patients and matched healthy volunteers were processed for quantification of apoptosis and phagocytosis.

The neutrophils from different groups were incubated for 24 hours in culture media supplemented with either autologous or heterologous plasma from matched pairs from other groups. After the incubation period, neutrophils aliquots were processed for quantification of apoptosis and phagocytosis.

We found that neutrophils of non-dialysis patients exhibited a significant higher apoptosis rates than neutrophils from hemodialysis patients and normal healthy volunteers. Also, neutrophils of hemodialysis patients exhibited a significant higher apoptosis rates than neutrophils of normal healthy volunteers. Moreover, plasma of non-dialysis patients is more apoptogenic than hemodialysis patients and normal healthy volunteers. Also, plasma of hemodialysis patients is more apoptogenic than normal healthy volunteers. Also, we observed that normal neutrophils of hemodialysis patients exhibited a significant lower phagocytosis rates than neutrophils of non-dialysis patients and normal volunteers. Also, neutrophils of non-dialysis patients exhibited a significant lower phagocytosis rates than normal neutrophils. Our study showed that plasma of non-dialysis patients has more suppressive effect on phagocytosis than plasma of hemodialysis patients and normal healthy volunteers. Also, plasma of hemodialysis patients has more suppressive effect on phagocytosis than plasma of normal healthy volunteers. But, neutrophils of hemodialysis patients are more prone to suppressive effect on phagocytosis than non-dialysis patients and normal healthy volunteers. While, neutrophils of non-dialysis patients are more prone to suppressive effect on phagocytosis than neutrophils of normal healthy volunteers. We concluded that there is significant inverse correlation between apoptosis and phagocytosis in all studied groups. This suggests that there is significant inverse correlation between neutrophil apoptosis and neutrophil functions. This suggests that apoptotic neutrophils are dysfunctional.

Key words: Apoptosis, phagocytosis, neutrophils, hemodialysis, chronic renal failure and non-hemodialysis.

Table of contents

1		Page
	Acknowledgement. Abbreviations	т
	Introduction & Aim of the Work.	I 1
	Apoptosis	4
+.	• •	4
	History of Apoptosis Introduction	6
	Definition of Apoptosis	6
	Apoptosis and necrosis	6
	Morpholigical Features	9
	Aim of Apoptosis, Function and Importance	10
	Why should a cell commit suicide?	10
	What makes a cell decide to commit suicide?	15
	Withdrawal of positive signals	15
	Receipt of negative signals	16
	When should a cell commit suicide?	17
	Molecular Mechanisms of Apoptosis	19
	Sages of Apoptosis	19
	Caspases	28
	Structure and Activation	28
	Molecular Ordering Of Caspase Activation	32
	The Death Receptors And The Premitochondrial Initiation Phase	36
	The Mitochondrial Decision Or Commitment Phase	40
	How Do Caspases Kill a Cell?	41
	Caspases Substrates	44
	Caspases specificity	48
	Inhibitors of Caspases	53
	Mitochondria	58
	Disruption of electron transport and energy metabolism	58
	Reactive oxygen species and cellular redox	60
	Release of Endogenous Mitochondrial Caspases and Caspase Regulators	60
	Death Receptors and Mitochondrial Pathways: The Connection	64
	Bcl-2 Family Proteins	65
	Post-translational modifications determine active/inactive conformations	68
	Transcription Factors Acting on Mitochondria	70
	Proteins that regulate of the apoptotic pathways	72
	Mechanism of The Release Of Mitochondrial Cell Death Effectors	74
	Rupture of the Outer Membrane	75
	Permeability Transition Pore-Induced Mitochondrial Swelling Model	75
	Hyperpolarization of the mitochondrial inner membrane theory	76
	Formation of Conducting Channels in the Outer Membrane	80
	At the mitochondria: mechanisms of action of pro-/anti-apoptotic	81
	molecules	
	Apoptosis And Disease	84
	Diseases associated to increased apoptosis	84
	Diseases associated to apoptosis inhibition	91
	Isolated category	94

Prospects of Apoptosis-Targeted Therapies	100
Agents That Target the Extrinsic Pathway	102
Agents That Target the Intrinsic Pathway	106
Mitochondria	106
Bcl-2	109
Agents That Target the Common Pathway:	113
Caspases	113
Inhibitor of Apoptosis Protein-Based Therapeutics: Releasing the Apoptotic Brakes	118
Tumor Suppressor p53	119
Viral Death Proteins: Apoptin and E4orf4	121
Interfering with Protein Degradation: Targeting the Proteasome	121
Others	122
4. Neutrophil apoptosis	130
Neutrophil delivery, function and clearance	130
Neutrophil delivery to the inflammatory microenvironment	131
Neutrophil function in the inflammatory microenvironment	138
Neutrophil clearance from the inflammatory microenvironment: apoptosis and necrosis.	142
Neutrophil cell surface expression in the exudate environment	142
Neutrophil apoptosis	144
Molecular changes in neutrophils during apoptosis	145
Phagocytosis of apoptotic neutrophils	146
Extracellular modulators of neutrophil apoptosis and survival	147
Regulation of neutrophil apoptosis and survival	150
Signaling pathways leading to neutrophil apoptosis and inflammation	152
5. Uremia and immune system	159
Tlymphocytes	161
Evidence of T lymphocytes defects	161
How to test T lymphocytes function?	161
T lymphocytes functional deficiency	162
Mechanisms of T lymphocytes functional deficiency	163
T lymphocytes activation	166
B lymphocytes in uremia	170
B lymphocytes Function in uremia	170
Mechanisms of B lymphocytes functional deficiency	170
B lymphocytes unspecific activation	173
Monocytes in uremia	175
Defect in co-stimulation and antigen presentation	175
Monocytes: Proinflammatory Cytokines and Their Inhibitors as the	175
Language of Activated Monocytes?	170
Monocytes activation and Chronic inflammation	178
Mechanisms of monocyte activation and proinflammatory cytokines production	181
Natural Killer (NK) Cells: No Longer a Neglected Cell?	183
Polymorphonuclear Leukocytes	184
Dysfunction of polymorphonuclear leukocytes in uremia	184
Neutrophils expression of cell surface receptors and neutropenia	184
Chemotaxis of Neutrophils	188
Phagocytic function of neutrophils	189

Degranulation of neutrophils	191
The mechanisms of degranulation	193
Oxidative and carbohydrate metabolism	194
Neutrophil activation in acute renal failure and sepsis	197
Mechanisms of Dysfunction of Polymorphonuclear Leukocytes	198
Impairment of PMNL Function By Malnutrition	198
Impairment of PMNL Function By Iron Overload	199
Impairment of PMNL Function By Anemia	200
Impairment of PMNL Function By Increased Cytosolic Calcium	200
Low And High Molecular Weight Uremic Toxins	201
Apoptosis of Leukocytes In Uremia	209
Apoptotic Pathways	209
Apoptosis of Polymorphonuclear Leukocytes In Uremia	210
Constitutive and inducible apoptosis of PMNLs	210
PMNL apoptosis and cellular malfunction	212
Modulation of PMNL apoptosis by dialysis membranes and	
peritoneal dialysis fluids	214
Oxidative stress and susceptibility of PMNL to apoptosis	218
Apoptosis Of Mononuclear Cells In Uremia	221
6. Material and Methods	228
7. Results	249
8. Tables	265
9. Figures	285
10. Discussion	316
11. Conclusion	339
12. Recommendations	342
13. References	344
14. Abstract	408
15. Summary	409
16. Arabic summary	411

Acknowledgement

First and foremost, thanks to ALLAH the most beneficial, most merciful.

It has been an honour and privilege to work with Prof. Dr. Omar El-Khashab, Professor of Internal Medicine, Cairo University, to whom I owe a lot for his outstanding examples of scientific dedication in this field. I am especially grateful to him for the practical intellectual and moral support that helped me immeasurably in so many ways. I learned a lot from his valuable remarks and scientific guidance.

I wish to extend my deepest appreciation and thanks to Prof. Dr. Hala Farawela, Professor of Clinical pathology, Cairo University, For her efforts, faithful assistance, extensive help, endless cooperation, diligence and encouragement. I learned a lot from her valuable remarks and meticulous revisions.

I am greatly honoured to express my deep gratitude and thanks to Ass. Prof. Dr. Mayssa Ibrahim, Ass. Prof. of Internal medicine, Cairo University, for her great help, guidance, efforts, faithful assistance, extensive help, endless cooperation, diligence and encouragement throughout the work.

I am greatly honoured to express my deep respect and gratitude to Dr. Mervat Khorshed and Dr. Heba Gooda, Lecturers of Clinical Pathology, Cairo University from who I received a great help and guidance that where invaluable and heartening.

Special thanks goes to Dr. Hedayat Adel, fellow of Clinical Pathology, Immunology, Cairo University who made a great effort and helped me.

Special thanks goes to my colleagues who where helpful and supporting to me.

Last, but not least, my deepest acknowledgement is to my parents who where of great help, encouragement and patience during the years of the study.

Hussein Al-Feshawi

- A1: Antagonist of apoptosis. A Bcl-2 family member that is also known as BFL-1 protein.
- **ADP:** Adenosine diphosphate.
- AIF: Apoptosis inducing factors.
- **Akt-1:** Active protein kinase B-alpha.
- **ANT:** Adenine nucleotide translocator.
- **ANT:** Nucleotide translocase.
- APAF: Apoptosis protease activating factor.
- **APCs:** Antigen-presenting cells.
- **APO:** Apoptosis
- **APO-1:** Also known as Fas and CD95, a member of the TNF receptor family.
- **APO-1L:** APO-1 ligand, also known as fas ligand. A member of the TNF family that induces apoptosis.
- **APO-2:** Receptor for TRAIL/APO-2L. A member of the TNF receptor family.
- **APO-2L:** APO-2 ligand that is also known as TRAIL. APO-2L is a member of the TNF family that induces apoptosis.
- **APO-3:** Death domain containing receptor. Also known as DR3, WSL-1, TRAMP or LARD
- **APO-3L:** The ligand for the death-domain-containing receptor Apo-3. It induces apoptosis.
- ARC: Apoptosis repressor with caspase recruitment domain.
- **ARF:** Acute renal failure.
- ATP: Adenosine trihosphate.

- **Bad:** Bcl-xL/Bcl-2 associated death promoter.
- **Bak:** Bcl-2 antagonist/killer.
- **Bax:** Bcl-2 associated x protein.
- **BC:** Before Christ.
- Bcatenin: aka plakoglobin.
- **Bcl-2:** B-cell lymphoma gene 2 product.
- **Bcl-x:** A Bcl-x isoform that inhibits apoptosis
- **Bcl-XL:** Long version of Bcl-2- related gene product X.
- **Bcl-xS:** Short form of Bcl-x.
- BDNF: brain derived neurotrophic factor.
- BH: BCL-2 homology domains designated BH1, BH2, BH3, and BH4.
- **BID:** BH3 interacting domain death agonist.
- **Bik:** Bcl-2 interacting killer.
- **Bim:** A member of the Bcl-2 family that promotes apoptosis.
- **BOD:** Bc1-2-related ovarian death gene.
- **Bok:** Bcl-2 related ovarian killer.
- C. elegans: Caenorhabditis elegans.
- **C1q:** First Component of Complement, q portion.
- **C3bi:** Thirdt Component of Complement, bi portion.
- C5a: Fifth Component of Complement, a portion.
- Ca²⁺: Calcium.
- **CAD:** Caspase-activated DNase.
- **cAMP:** cyclic Adenosine monophosphate.
- **CAPD**: Continuous ambulatory peritoneal dialysis.
- **CARD:** Caspase activation and recruitment domain.
- Caspases: cysteine aspartate-specific proteases
- CAV: Chicken anaemia virus.

- CC: First two cysteine (C) amino acid resiues are in juxta position. It belongs to β-chemokine family. They are more specific towards monocytes.
- **CD14:** Cluster of Differentiation 14.
- **CD36:** Cluster of Differentiation 36.
- **CD95** (**Fas/Apo-1**): Cluster of Differentiation 95. Also known as Fas and APO-1, a member of the TNF receptor family
- CED: Caenorhabditis Elegans Death product.
- **CED-3:** Caenorhabditis Elegans Death 3. A cell death gene in the nematode C. elegans. CED-3 promotes apoptosis and is a homologue to Apaf-3/Caspase-9 and Caspase-3.
- **cFLIPs:** Cellular homologues of viral FADD-like ICE inhibitory protein).
- **c-fos**: This ~62 kDa leucine zipper protein cannot homodimerize but rather functions in heterodimeric complex with c-jun and other members of the AP1 family of transcription factors.
- **cIAP1:** Cellular inhibitor of apoptosis protein 1
- **cIAP2:** Cellular inhibitor of apoptosis protein 2.
- **CIN:** Ghronic interstitial nephritis.
- **c-jun:** This proto-oncogene encodes a ~45 kDa transcription factor that is a member of AP1 family of transcriptional proteins. c-jun must form dimers to function and does so through the leucine zipper motif. A second partner, usually c-fos, generates the transcriptionally active heterodimer.
- **CK:** Creatine kinase.
- **CK-18:** Cytokeratin-18,
- CML: Chronic myelogenous leukaemia.
- c-myc: Myelocytoma oncogene.
- **CORE:** Circulating opsonin receptor expression.

- **cPLA2:** Cytoplasmic phospholipase A2.
- **CPP32:** Also known as Caspase-3.
- **CR3:** Receptor of the third component of complement.
- **CRF:** Chronic renal failure.
- **CrmA:** Cytokine response modifier A.
- **Cr-P:** Creatine phosphate.
- CsA: Cyclosporin A.
- **CSF:** Colony stimulating factors.
- **C-terminus:** Carboxy terminus.
- CTLs: Cytotoxic T lymphocytes
- **CU:** Cuprophane membranes.
- **CXC:** First two cysteine (C) amino acid residues separated by a separate amino acid (X). It belongs to α-chemokine family. They are more specific towards neutrophils.
- CycD: Cyclophilin D.
- **cyt c:** Cytochrome c.
- **D4-GDI:** Rho GDP-dissociation inhibitor, D4. GDP-Dissociation Inhibitor for Ras-related Rho family GTPase.
- **dATP:** deoxyadenosine triphosphate.
- DcR: Decoy receptor.
- DcR-1(TRID/TRAIL-R3/LIT): Decoy receptor 1. DcR-1 is a receptor for TRAIL that inhibits TRAIL signaling. DcR-1 is also known TRID, LIT and TRAIL-R3.
- **DcR-2** (**TRAIL-R4/TRUNDD**): Decoy receptor 2. DcR-2 is the receptor for Trail that inhibits TRAIL signaling. DcR-2 is also known as TRUNDD and TRAIL-R4.
- **DcR-3:** Decoy receptor 3. It binds to FasL and inhibits FasL-induced apoptosis.

- **DD:** Death domain.
- **DED:** Death effector domain.
- **DEVD:** Amino acid residues (Asp-Glu-Val-Asp) of Caspase-3 cleavage site within PARP.
- **DFF45/ICAD:** 45 kDa component of DNA fragmentation factor; inhibitor of the caspase-activated deoxyribonuclease.
- **Diablo:** Direct inhibitor of apoptosis protein [IAP] binding protein with low isoelectric point [pI].
- **DIP I:** Degranulation inhibiting protein I.
- **DIP II:** Degranulation inhibiting protein II.
- **DISC:** Death-inducing signaling complex.
- **DMTU:** dimethylthiourea.
- **DNA:** Deoxyribonucleic Acid.
- **DNA-PKCS:** DNA protein kinase catalytic subunit.
- **DNA-RFC140:** 140 kDa subunit of DNA replication factor C.
- **DND:** Delayed Neuronal Death.
- **DR:** Death receptor.
- DR-3 (Apo-3, LARD, TRAMP, Wsl-1, Tweak): Death receptor 3. DR-3 is a member of the TNF receptor family that is also known as Apo-3, WSL-1, TRAMP or LARD.
- **DR-4** (**Apo-2/TRAIL-R1**): Death receptor 4. One of the receptors for TRAIL that is also known as APO and TRAIL-R1.
- DR-5 (TRAIL-R2/TRICK-2/KILLER): Death r receptor 5. One of receptors for TRAIL that is also known as TRAIL-R2, TRICK-2 and KILLER.
- **DR-6:** Death receptor 6.
- **EAE:** Experimental autoimmune encephalitis.
- EC: Endothelial cell.

- **EGF:** Endothelial growth factor.
- **EIA:** Enzyme Immunoassay.
- **ELC:** Epstein-Barr virus-induced molecule 1 ligand chemokine (CCL19).
- **ENA-78:** Epithelial cell-derived neutrophil attractant-78.
- ER: Endoplasmic reticulum.
- **ERICE:** A FLICE-activatable caspase. Also known as caspase-13.
- ERK: p42/44 extracellular signal-related protein kinase.
- **ESRD:** End stage renal disease.
- FADD: <u>Fas-associated death domain.</u>
- FAK: focal adhesion kinase.
- Fas (Apo-1, CD95): Fas is a member of the TNF receptor family promotes apoptosis. Also, it is known as CD95 and APO-1.
- FasL: Fas ligand.
- **Fc:** Fragment crystallizable (Portion of antibody molecule bound by membrane receptors).
- **Fcy:** Fragment crystallizable (Portion of antibody molecule bound by membrane receptors), portion gamma
- FcyRIIa (CD32): Receptor for fragment crystallizable (Portion of antibody molecule bound by membrane receptors), portion IIa.
- **FcyRIIIb** (**CD16**): Receptor for fragment crystallizable (Portion of antibody molecule bound by membrane receptors), portion IIIb.
- **FD:** Factor D.
- **FLICE:** Fadd-like ICE. FLICE is also known as Caspase-8.
- **FLICE-2**: Fadd-like ICE. FLICE is also known as Caspase-8.
- **FLICE-2:** Fadd-like ICE-2. FLICE-2 is also known as Caspase-10.
- FLICE-2: Fadd-like ICE-2. FLICE-2 is also known as Caspase-10.
- **FLIP:** Fadd-like ICE-2. FLICE-2 is also known as Caspase-10.
- **fMLP-M:** formyl-methionyl-leucyl-phenylalanine methylester.

- Gas2: Growth arrest specific gene product 2.
- GCP-2: Granulocyte chemotactic protein.
- **G-CSF:** Granulocyte colony-stimulating factor.
- **GDI**: GDP dissociation inhibitor.
- **GIP I:** Granulocyte inhibiting protein I.
- **GIP II:** Granulocyte inhibitory protein II.
- **gln22/ser23: Gln** = glutamine; **Ser** = Serine.
- Glucose-6-P: Glucose-6-phosphate (glucose-6-P),
- **GM-CSF:** Granulocyte macrophage colony-stimulating factor.
- gp: Glycoprotein.
- **GRO-α:** Growth-related oncogene alpha.
- **GRO-β:** Growth-related oncogene beta.
- **GRO-δ:** Growth-related oncogene delta.
- **GVHD:** Graft versus host disease.
- **H**₂**O**₂: Hydrogen peroxide.
- **HCV:** Hepatitis C virus.
- **HDx:** hemodialysis.
- **HIAP1:** Human inhibitor of apoptosis protein 1.
- **HIAP2:** Human inhibitor of apoptosis protein 2.
- HIV: Human immunodeficiency virus.
- **HK:** Hexokinase.
- **HILP:** Human IAP-like protein, regulates programmed cell death downstream of Bcl-xL and cytochrome c. Also known as XIAP.
- **HMS:** hexose monophosphate shunt.
- **HnRNP**: heteronuclear ribonucleoproteins.
- **Hsp90:** 90 kDa heat shock protein.
- HTN: Hypertension.
- IAPs: Inhibitors of apoptosis proteins.

- iC3b: Inhibitory of third complement component 3b.
- **ICAD:** Inhibitor of caspase-activated DNAse.
- ICAM: Intercellular adhesion molecule.
- **ICAM-3:** Intercellular adhesion molecule 3.
- **ICE:** Interleukin-1beta converting enzyme.
- **ICE-LAP3:** ICE-like apoptotic protease 3. ICE-LAP3 is also known as Caspase-7.
- ICE-LAP6: ICE-like apoptotic protease 6. ICE-LAP6 is also known Caspase-9.
- **ICErel II:** ICE/CED-3-related protease. ICErel II is also known as Caspase-4.
- ICErel III: ICE/CED-3 related protease. ICErel III is also known Caspase-5.
- **Ich-1:** ICE and ced-3 homologue-1. Ich-1 is another name for Caspase-2.
- **Ich-2:** Ice and ced-3 homologue-2. Ich-2 is also known as Caspase-4.
- **Ich-3:** ICE and ced-3 homologue-1. Ich-1 is another name for Caspase-11.
- **IETD:** Ile-Glu-Thr-Asp. The amino acid sequence corresponds to one of the Caspase-8 cleavage sites (amino acids 172-175) of the inactive caspase-3 precursor.
- **IgA:** Immunoglobulin A.
- **IgG:** Immunoglobulin G.
- **IgM:** Immunoglobulin B.
- **IkB:** Inhibitor of NF-kB.
- IL: Interleukin.
- IL-1β, -2, -3, -6, -8, -10, -12 and -15: Interleukins 1 beta, 2, 3, 6, 8, 10, 12 and 15.
- IL-IRa: Interleukin I receptor antagonist.