

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من 15-25 مئوية ورطوبة نسبية من 20-40%

To be Kept away from Dust in Dry Cool place of
15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

Studies on Rice Stem Borer, Chilo agamemnon Bles.

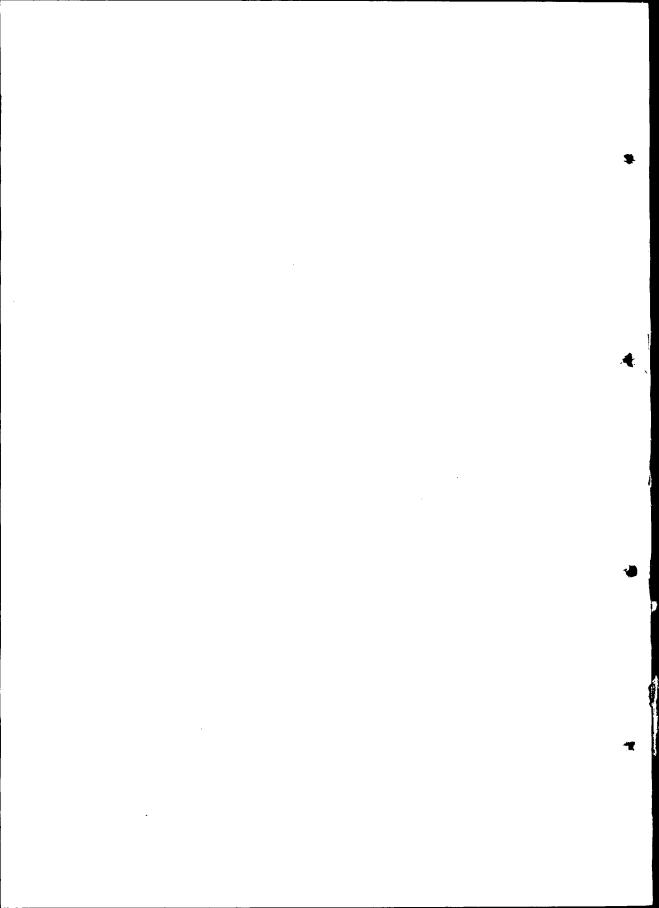
By

Magdy Farouk Mohamed El-Samahy

B.Sc. Econ. Entomol., Fac. Agric., Kafr El-Sheikh, Tanta Univ., 1997

Thesis

Submitted in Partial Fulfillment of the


Requirements for the degree of

Master of Science

in

Economic Entomology

Economic Entomology Department Faculty of Agriculture Kafr El-Sheikh, Tanta University

APPROVAL SHEET

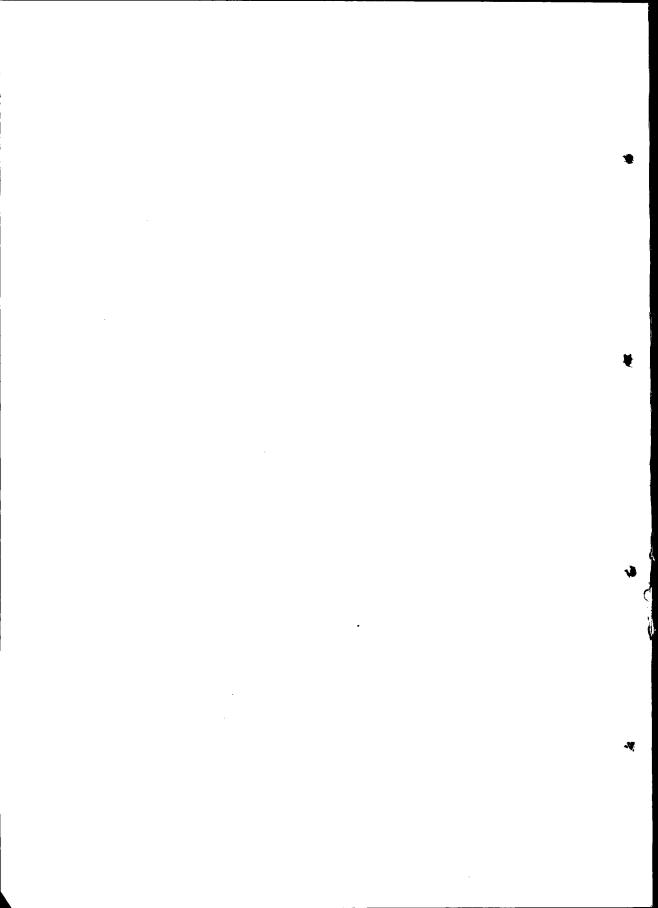
Name of student : Magdy Farouk Mohamed El-Samahy

Degree : Master of Science

Title of Thesis : Studies on Rice Stem Borer, Chilo

agamemnon Bles.

Approved by:

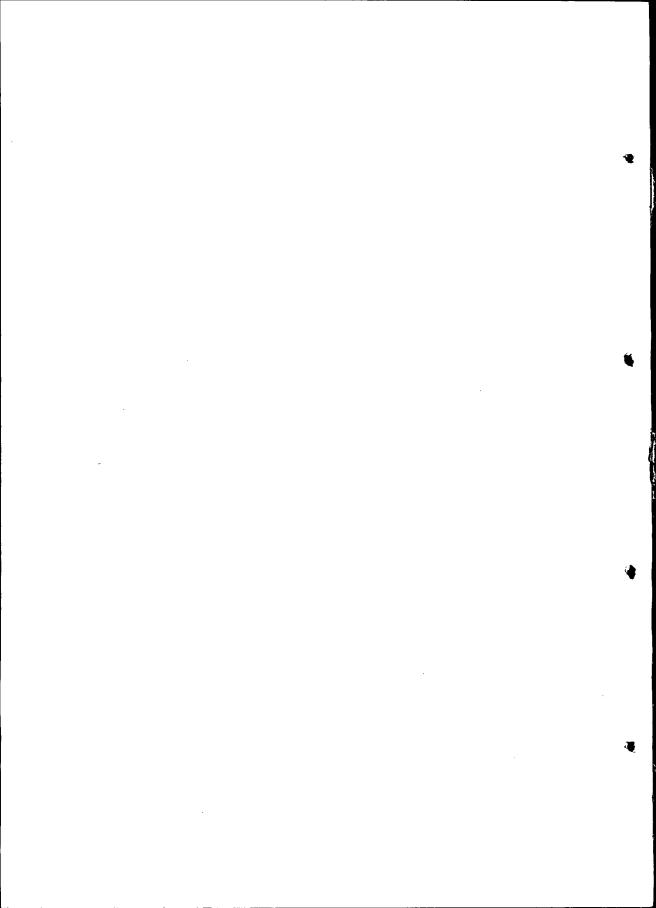

Prof. Dr. El. Hawary

Prof. Dr. M. M. Essany

Prof. Dr. Ramzy St

Date: 28/ 1 /2002

Committee in Charge


ACKNOWLEDGMENT

I would like to express my deep gratitude to my supervisors: Dr. Mohamed B. Shawer, Prof. Econ. Entomol., Fac. Agric., Kafr El-Sheikh, Tanta Univ., Dr. Hessien A. Boraei, Prof. Econ. Entomol., same Faculty and Dr. Mahmoud R. Sherif, Head of Entomol. Dept., Rice Research & Training Center, Sakha, Agric. Res. Center. I am indebted to the supervisors who suggested the problem, offered facilities and constructively criticised of the manuscript.

The author thanks Dr. M. Cohen and Mrs. R. Aguda, International Rice Research Institute (IRRI), Philippines for providing the toxin CryIAb which was tested against the local species of rice stem borer.

Sincere thanks are due to Prof. Dr. Raffat A. Ali and Mr. Sabry M. Shaheen, Soil Sci. Dept., Fac. Agric., Kafr El-Sheikh, Tanta Univ. for their help in evaluating silica in rice plants.

Also, Sincere thanks are extended to staff members of Rice Research and Training Center and staff members of Econ. Entomol. Dept., Fac. Agric., Kafr El-Sheikh, Tanta Univ. for valuable facilities and kind encouragement during the investigation.

CONTENTS

	Page				
INT	RODUCTION1				
RE	VIEW OF LITERATURE3				
1.	Artificial diets for stem borers				
2.	Inhibitory effect of some materials supplemented to the				
	artificial diets on the stem borers6				
3.	Adverse effects of insect pathogens and plant extracts on stem				
	borers8				
	3.1. Insect pathogens8				
	3.2. Plant extracts				
4.	Effect of silica on the rice stem borers13				
MA	TERIALS AND METHODS17				
1.	Rearing the rice stem borer, Chilo agamemnon Bleszynski on				
	artificial diet				
	1.1. Preparing the diet				
	1.2. Rearing technique				
	1.3. Biological aspects considered				
2.	Effect of insect pathogens on the rice stem borer, C.				
	agamemnon (Bles.)20				
	2.1. Toxins of Bacillus thuringiensis (Berliner) supplemented				
	to the artificial diet20				
	2.2. Field applications of B. thuringiensis and Beauveria				
	bassiana (Bals.)21				
3.	Effect of plant extracts on C. agamemnon23				
	3.1. Plant extracts supplemented to the artificial diet23				
	3.2. Field applications of plant extracts24				
4.	Effect of silica on the rice stem borer, C. agamemnon26				
	4.1 Silica supplemented to the artificial diet 26				

	4.2.	Field applications of silica		26	
RES	SULT	TS AND DISCUSSION	••••••	29	
1.	Rea	ring the rice stem borer, C. agamemnon or	artificial d	et29	
2.	Effe	ect of insect pathogens on the rice	stem bore	er, <i>C</i> .	
	agai	тетпоп	•••••	31	
	2.1.	Toxins of B. thuringiensis supplemen	ted to the ar	tificial	
		diet	***********	31	
	2.2.	Field applicatioins of B. thuringiensis an	d <i>B. bassiar</i>	<i>na</i> 36	
		2.2.1. Effect on dead heart levels		36	
		2.2.2. Effect on white head levels		39	
3.	Effe	ect of plant extracts on C. agamemnon		43	
	3.1.	. Plant extracts supplemented to the artific	ial diet	43	
	3.2.	. Field applications of plant extracts		46	
		3.2.1. Effect on dead heart levels		46	
		3.2.2. Effect on white head levels		49	
4.	Effe	ect of silica on the rice stem borer, C. again	nemnon	53	
	4.1.	. Silica supplemented to the artificial diet		53	
	4.2.	. Field applications of silica		56	
		4.2.1. Effect on dead heart levels	•••••	58	
		4.2.2. Effect on white head levels		58	
	4.3.	. Effect of silica on the rice stem borer lan	vae	64	
		4.3.1. Population and survival		64	
		4.3.2. Symptoms of larval injury		66	
SU	SUMMARY				
RE	REFERENCES				
ARABIC SUMMARY					

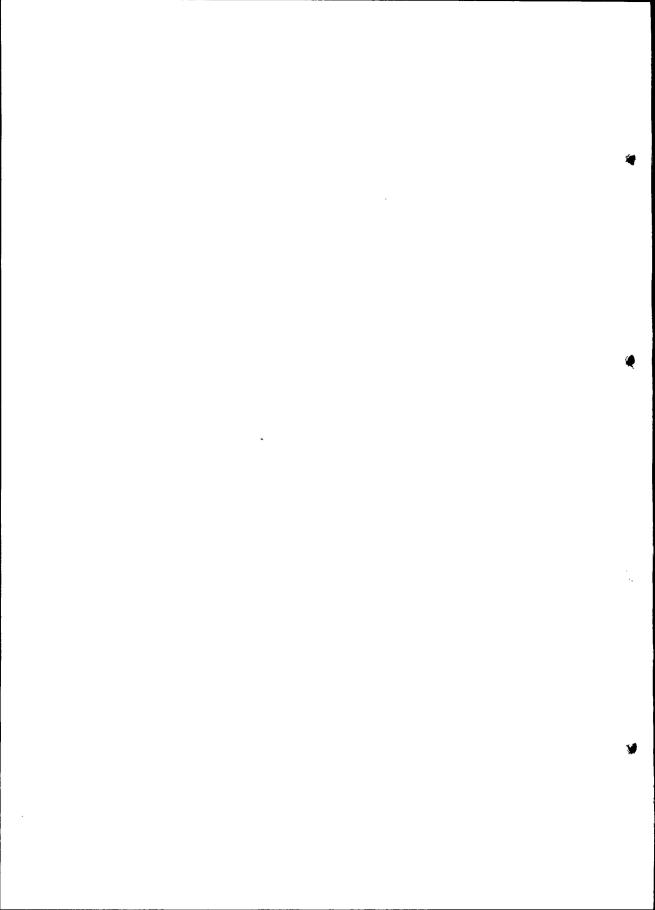
INTRODUCTION

Rice (*Oryza sativa* L.) is attacked by several insect pests in the A.R. of Egypt and other countries, but relatively few inflict significant economic losses. The most important insect attacking rice, in the A.R. of Egypt, is the rice stem borer (RSB), *Chilo agamemnon* Bleszynski. Its attack to rice results in "dead hearts" during vegetative stage, and "white heads" during heading.

Chemical control of rice stem borer is involved in the control strategy of *C. agamemnon*. However, application of synthetic insecticides should be avoided, or minimized, to reduce risks to the environment and human health.

Entomopathogens biological control as agents better alternative to chemical control for many insect pests. Despite many constraints to the development of entomopathogenic fungi for the control of pests (Quinlan, 1986), there are some bright horizons for these microorganisms (Federici, 1990). Also, Bacillus thuringiensis (Berliner) produces protein crystals toxic to many insect pests. The International Rice Research Institute (IRRI) has worked intensively to produce the so called Bt rice. The Bt rice has been modified, by means of biotechnology, with genes from B. thuringiensis (Bt) to produce toxins for resistance to stem borers. One of the primary steps for evaluating these toxins is to be incorporated into insect diet to find out their toxicity against a certain insect species (e.g. C. agamemnon in the current study).

In addition to entomopathogenic agents, plant extracts are being widely tested and applied to control insect pests in the field and storage. Neem, *Azadirachta indica* (A. Juss) products protect the rice crop from


yellow stem borer, Scirpophaga incertulas (Walker) proved to be less effective than the insecticide chloropyrifos (Rath, 1999). On the other hand, rice varieties with high silica content, or plants receiving silica treatments in the paddy field were resistant to stem borers (Mishra et al., 1990 and Mandras, 1991).

The current study was undertaken at the Rice Research and Training Center (RRTC), Sakha, Kafr El-Sheikh, and Faculty of Agriculture, Kafr El-Sheikh, Tanta University to investigate the following points:

- 1. Basic artificial diet for rearing rice stem borer, Chilo agamemnon

 Bles
- 2. Effect of *B. thuringiensis* toxins supplemented to the artificial diet on the biology of the borer.
- 3. Efficiency of field application of *B. thuringiensis* and *Beauveria* bassiana against rice stem borer:
- 4. Effect of plant extracts supplemented to artificial diets or applied in the field on *C. agamemnon*.
- 5. Effect of silica supplemented to the artificial diet on some biological aspects of rice stem borer.
- 6. Role of silica applied in the field on C. agamemnon.

REVIEW OF LITERATURE

1. Artificial diets for stem borers:

Metwally (1972) developed two synthetic diets for rearing *Chilo agamemnon* Bles., both diets were identical in their constituents except the filling materials. The first diet had 15 g rice bran as a filling material, while the second one had wheat bran at the same amount. The other ingredients were cellulose powder, glucose, casein, cholesterol, dried yeast, ascorbic acid, choline chloride, in addition to tap water and potassium hydroxide (22.4%). As antimicrobial agents, the author used methyl paraben (methyl-p-hydroxybenzoate), streptomycin, formaldehyde or streptomycin, and sorbic acid.

Poitout *et al.* (1974) developed a simple and inexpensive artificial medium to rear lepidopterous insects. The diet was based on agar, maize flour wheat germ, brewer's yeast, ascorbic acid and antimicrobial agents. It has been used to rear 28 species of noctuids and arctiids.

Ramashrit and Sarup (1985) tested 13 principle base-ingredients for mass-rearing of the pyralid, *Chilo partellus* (Swinhoe). The diets contained the following ingredients: winged bean (*Psophocarpus tetragonolobus*), water soaked soybean, green gram (*Vigna radiata*), dew gram (*V. aconitifolia*), cluster bean (guar), horse bean (*Canavalia ensiformis*) and horse gram (*Macrotyloma uniflorum*). These diets were unsuitable due to early larval mortality. However, the biological performance of *C. partellus* was good on diets formulated with various millets, including barnyard millet (*Echinochloa frumentacea*), proso millet, finger millet (*Eleusine coracans*), foxtail millet, kado millet (*Paspalum scrobiculatum*) and little millet (*Panicum miliare*). In