

Production of Kefir from synergism between probiotic bacteria and yeast: Therapeutic and nutritional aspects

A Thesis

Submitted in Partial Fulfillment of the Requirement for the Degree of M.Sc. in Microbiology

By

Aliaa Talat Gaber Ali

(B.Sc. Microbiology, 2007)

DEPARTMENT OF MICROBIOLOGY

FACULTY OF SCIENCE

AIN SHAMS UNIVERSITY

2014

Production of Kefir from synergism between probiotic bacteria and yeast: Therapeutic and nutritional aspects

A Thesis

Submitted in Partial Fulfillment of the Requirement for the Degree of M.Sc. in Microbiology

By

Aliaa Talat Gaber Ali

(B.Sc. Microbiology, 2007)

Supervised by

Prof. Dr. Yousseria Mohamed Hassan Shetaia

Prof. of Microbiology Department, Faculty of Science, Ain Shams University

Dr. Tarek Mostafa Kamal Mahmmoud

Assoc. Prof- Genetic Unit in Pediatrics Department, Faculty of Medicine, Ain Shams University

Dr. Hoida Abdallah Mohammed El-shazly

Assoc. Prof- Dairy science and technology Department, Food Technology Research Institute, Agricultural Research Centre

Department Of Microbiology

Faculty Of Science

Ain Shams University

2014

Supervision Sheet

Production of Kefir from synergism between probiotic bacteria and yeast: Therapeutic and nutritional aspects

A Thesis

"Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science"

by

Aliaa Talat Gaber Ali

B. Sc. In Microbiology - Chemistry (2007)

Supervised by

Prof. Dr. Yousseria Mohamed Hassan Shetaia

Prof. of Microbiology Department, Faculty of Science, Ain Shams University

Dr. Tarek Mostafa Kamal Mahmmoud

Assoc. Prof- Genetic Unit in Pediatrics Department, Faculty of Medicine, Ain Shams University

Dr. Hoida Abdallah Mohammed El-shazly

Assoc. Prof- Dairy science and technology Department, Food Technology Research Institute, Agricultural Research Centre

Approval sheet

Production of Kefir from synergism between probiotic bacteria and yeast: Therapeutic and nutritional aspects

A Thesis

"Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science"

by

Aliaa Talat Gaber Ali

B. Sc. In Microbiology - Chemistry (2007)

This thesis for M.Sc degree has been approved by;

Prof. Yousseria Mohamed Hassan Shetaia

Prof. of Microbiology Department, Faculty of Science, Ain Shams University

Dr. Tarek Mostafa Kamal Mahmmoud

Assoc. Prof- Genetic Unit in Pediatrics Department, Faculty of Medicine, Ain Shams University

Dr. Hoida Abdallah Mohammed El-shazly

Assoc. Prof- Dairy science and technology Department, Food Technology Research Institute, Agricultural Research Centre

ACKNOWLEDGMENT

Ultimate Thanks are due to ALLAH who without his aid this work could not be done.

I am most grateful to my Supervisor, Prof. Dr. Yousseria, M.Shetaia, for guiding me into the world of Science. Under her supervision I have felt trusted to make my own decisions and been able to work independently. Because of her skills as a researcher and her positive attitude I have believed that, despite the difficulties this thesis will be completed one day.

I wish to express my deepest gratitude to Dr. Tarek, M. Kamal, for sharing his vast knowledge and experience. And for his valuable advice and precious guidance during the progression of this work.

I wish to thank Dr. Hoida, A. Elshazly, who enthusiasm, I only can admire, She has guided my work with unfailing optimism and care, in addition to providing me with the facilities that enabled me to undertake and complete this work.

Also, I would like to extend special thanks to Dr. Mahmoud Hozayn for his efforts, professor (agronomy) president of Statistical consulting unit, 2005-2010. National Research Centre.

I would like to extend special thanks to all member-staff of Food Technology Research institute, Agriculture Research Center (ARC), Giza for their fruitful cooperation and friendships. Special thanks go to quality control laboratory. Finally, I am most grateful to my husband Dr. Ramy, who made my work possible and together with our son, Ahmed. Life delightful, special thanks go to my Family for their never-ending love and support.

Dedicates

To my dear Father, Dr. Talat.

To my Mother

ABSTRACT

Kefir is fermented milk product which had many health benefits, this include anti-microbial, anti-inflammatory and metabolic benefits. The most importantly, many studies have proven that kefir may have strong antimicrobial activity and anti-cancerous potential. In this study, sterilized low fat cow milk was inoculated with different concentrations of starter microbial culture inocula (3, 4, 5, 6% V/W) and incubated at 2012C for 24hr. The protein content, ash, and total solids contents increased with the increase of kefir inocula concentration. The highest concentration of microbial starter culture (6%) was accompanied with the highest value of protein content (4.51- 4.85%), while the pH values ranged from 4.48 to 5.52. On the other hand, the lactose content decreased as the concentration of starter microbial inocula increased from 3 to 6%. Also, Fat contents decreased as the concentration of starter microbial inocula increased, especially in kefir products T3 where the fat content decreased from 0.96 to 61%. Total solids increased and moisture contents decreased as the starter microbial concentration increased (3-6%). There was an inverse relationship between syneresis and penetration characteristics of the differently prepared kefir products. The prepared Kefir types T5 and T6 gave the best score of sensory evaluation compared to other preparations. Different types of kefir products had the strong inhibitory effect against each of G (-ve) bacteria (Escherichia coli (ATCC 8739), Salmonella enteritides (ATCC 14028), G (+ve) bacteria Staphylococcus aureus (ATCC25923), Bacillus subtilus (ATCC6633)) and Candida albicans (ATCC 10231). There was a gradual increase of the mean of inhibition zone in parallel with the increase of concentration of microbial starter inocula from3-6%. In this study, the concentration inocula of 6% accompanied with the highest inhibitory effect for the five different pathogenic microbial strains, especially in the kefir type T6.

According to the effect of kefir on the experimental animals, the body and organs weights had significantly increased, while the values of the tumor marker CA19.9 had decreased. The results of biochemical analysis revealed that the feeding of experimental animals on different types of kefir led to the increase values of each of HDLc, potassium, sodium and protein. On the other hand, kefir products led to the decreased values of total cholesterol, LDLc, AST and ALT.

Key words: kefir- chemical composition-syneresis- penetration- sensory properties- antimicrobial- anticancer.

List of Contents

No.	Title	page
	Introduction	1
	Aim of work	3
	Literature review	4
1	Definition of Probiotics	4
2	Kefir	6
2-1	Historical Background of Kefir	7
2-2	Characteristics of Kefir	7
2-3	Chemical composition of Kefir	9
3	Kefir grains	10
3-1	Microbiology of Kefir grains	12
3-1-a	Bacteria	14
3-1-b	Yeasts	15
3-1-с	Interactions of Co-cultures in Kefir grains	16
4	Ways of manufacture of kefir	18
4-1	Traditional process	19
4-2	Industrial process	20
5	Health benefits of probiotics and kefir	22

No.	Title	page
5-1	The role of probiotic in treating gastrointestinal disorders	23
5-1-a	Ulcer	23
5-1-b	Diarrheal disease	23
5-1-c	Antibiotic – induced diarrhea	24
5-1-d	Viral diarrhea	25
5-2	Stimulation of immune system	25
5-3	Lactose intolerance	26
5-4	Cholesterol metabolism	27
5-5	Antimicrobial properties of kefir	27
5-6	Infants of Kefir	29
6	Colorectal Cancer	30
6-1	Incidence of colorectal Cancer	30
6-2	Colorectal Cancer and diet	31
6-3	Colonic Cancer induced by 1.2 Dimethyl hydrazine (DMH)	31
6-4	Treatment of colon Cancer	32
6-5	Anticancer effect of kefir	37
	Materials and methods	37
	Materials	37

No.	Title	page
1	Micro organisms	37
1-1	Lactic acid bacterial culture	37
1-2	Yeast strains	37
1-3	Pathogenic Microorganisms	37
2	Chemicals	39
2-2-1	Carcinogenic agent	39
2-2-2	Tumor Marker	39
2-2-1	Biochemical kits	39
	Methods	39
1	Preparation of yeast starter cultures	39
2	Preparation of bacterial starter cultures	40
3	Preparation of different Kefir products	41
4	Maintenance of pathogenic microorganisms	43
5	Antimicrobial activity	43
6	Biological evaluation	43
6-1	Design of the experiment	43
6-2	The preventive kefir feeding group	44
6-3	The therapeutic kefir feeding group	45

No.	Title	page
7	Sampling	45
7-1	Blood samples	45
7-2	Organs	46
8	Experiments	46
8-1	Determination of chemical composition	46
8-2	Determination of total solids	46
8-3	Determination of lactose	46
8-4	Determination of pH Value	46
8-5	Determination of moisture	46
8-6	Calculation of caloric value	47
8-7	Rheological prosperities	47
8-8	Sensory evaluation	47
9	Serum analysis	47
9-1	Serum lipid assay	47
9-1-1	Determination of total cholesterol	47
9-1-2	Determination of high density lipoprotein (HDLc)	48
9-1-3	Determination of low density lipoprotein (LDLc)	48
9-2	Determination of blood glucose	48

No.	Title	page
9-3	Determination of metal-ions	48
9-3-1	Determination of calcium	48
9-3-2	Determination of potassium	49
9-3-3	Determination of sodium	49
9-4	Determination of kidney functions	49
9-4-1	Determination of creatinine	49
9-4-2	Determination of urea	49
9-4-3	Determination of uric acid	49
9-5	Determination of liver functions	50
9-5-1	Determination of aspartate transaminase	50
9-5-2	Determination of alanine transaminase	50
9-5-3	Determination of alkaline phosphatase	50
9-5-4	Determination of protein	50
10	Preparation of rat`s organs for histopathology	50
11	Statistical analysis	51
	Results and discussion	52
	Summary and conclusion	127
	Recommendations	133

No.	Title	page
	References	135