

INFLUENCE OF MYCORRHIZAE AND PHOSPHATE MOBILIZING BACTERIA ON P NUTRITION OF SOME VEGETABLE CROPS

BY

Islam Ibrahim Ahmed Abou El-Seoud

A Thesis Submitted on Partial Fulfillment of the Requirements Governing the Award of the Degree of

DOCTOR OF PHILOSOPHY IN AGRICULTURAL SCIENCES

SOIL AND AGRICULTURAL CHEMISTRY DEPARTMENT (SOIL & WATER)

UNIVERSITY OF ALEXANDRIA

SUPERVISION'S COMMITTEE

Prof. Dr. Maher G. Nasseem

Emeritus Prof. of Soil and Water Faculty of Agriculture (Saba- Basha) University of Alexandria

Prof. Dr. Manfred K. Schenk

Prof. of Plant Nutrition Institute of Plant Nutrition University of Hannover Germany

Prof. Dr. Essam A. Koreish

Prof. of Soil Microbiology Faculty of Agriculture (El-Shatby) University of Alexandria

ACKNOWLEDGEMENT

Firstly, my obedience and deep thanks to God, who had created us and has not, left us without guidance. Thanks to God, who gave all causes for accomplishing this work.

I am grateful to my supervisor **Prof. Dr. Maher Georgy Nasseem**, Professor of Soil Science, Soil and Agricultural Chemistry Department, Faculty of Agriculture, Saba Basha, Alexandria University, Egypt, for his guidance and continued assistance in writing and revising this thesis.

I would like to express my heart-felt gratitude to my supervisor **Prof. Dr. Manfred K. Schenk**, Professor of Plant nutrition, Institute of Plant Nutrition, Hanover University, Germany, for giving me the opportunity to work on this stimulating subject, and for his meticulous guidance and supervision of my research work. I owe him a great deal of gratitude for the readiness, care, and kindness with which he supervised my work and guided me in writing and revising this thesis.

Great thanks are due to **Prof. Dr. Esam A. Koreish**, Professor of Soil Microbiology, Soil and Water Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Egypt, for his supervision and assistance in preparing this thesis.

Special thanks for Prof. Dr. Von Alten for giving me the mycorrhizal inoculums. I would like to thank also Dr. B. Steingrobe for helping me to understand the mechanistic simulation model.

I am grateful to Gerlinde Geisler and Alexander Klein for assisting me while working in the glasshouse and growth chamber. I would also to thank Dr. Klaus Bull, Dr. Heidi Agner, Dr. Angelika Straβ, Miss Katja Bogdan, and Mr. Dejene Eticha for their continuous support and cooperation during my research. I am pleased to Miss Anne Herwig for her technical assistance in the analysis of soil and plant tissues. I also appreciate the collaboration of all other staff and colleagues of the Institute of Plant Nutrition for their support during this work.

Lastly, I would like to express my deep gratitude to my parents, my daughter, my brothers, and my wife, who have given me the inspiration and made my life worth while.

Abstract

Plant species may differ in phosphorus efficiency. Phosphorus efficiency of plants may arise from enhanced ability of roots to acquire P from the soil or/and from high ability of shoots to produce yield per unit P acquired. This research was aimed at studying P efficiency of plants (carrot, onion, and leek), and to elucidate morphological root characteristics, and mycorrhizal fungi hyphae influencing P efficiency of the species. Five experiments were carried out in Hanover University - Germany to achieve the aims mentioned above. First experiment was carried out to evaluate the response of carrots plants to the inoculation by two strains of A-mycorrhizal fungi (Glomus intraradices M49 and M301). The shoot yield of the carrot inoculated with mycorrhizal strain 49 was increasing significantly in comparison with the other mycorrhizal strain (M301). On the other hand, there was no significant difference in hyphae length between two strains of mycorrhizal fungi. These results indicated that carrot inoculated with mycorrhizal strain 49 had higher P efficiency than carrot inoculated with the other mycorrhizal strain (301). The second and the third experiments were aimed to evaluate the response of carrot plant at narrow and wide range of available P in soil with and without mycorrhizal fungi. These experiments were conducted in a growth chamber with five levels of P (61, 88, 130, 162, and 218 mg P-CAL kg soil⁻¹ in the second experiment and 20, 39, 69, 169, and 332 mg P-CAL kg soil⁻¹ in the third experiment), with 12 replicates in each. Carrot inoculated with mycorrhizal fungi attained more than 80% of its maximum yield in both experiments at the lowest level of P. whereas carrot without mycorrhizal fungi reached only 50% and 5% in the second and the third experiments respectively at the same level of P. This indicated that carrot with mycorrhizae was P-efficient compared to carrot without mycorrhizae. Predicted P uptake by a mechanistic simulation model revealed that mycorrhizal hyphae contributed about 61% and 84% (in the second and the third experiments respectively) to the total P uptake at the lowest P level. The relationship between the observed and predicted P uptake at the lowest P level of carrot with and without mycorrhizae revealed that model parameters explained nearly 3/5th of the total P uptake in second experiment, but only 1/5th that of carrot inoculated with mycorrhizae in third experiment. This showed that the P uptake of carrot inoculated with mycorrhizae in the third experiment was strongly under-predicted, therefore, it was hypothesized that carrot inoculated with mycorrhizae may have the ability to mobilize and take up soil P additionally by other mechanisms such as exudation of organic acid by both roots and mycorrhizal hyphae. The forth experiment was aimed to evaluate the activity of mycorrhizae and phosphorus dissolving bacteria at two levels of available P in soil (61 and 218 mg P-CAL kg soil⁻¹) and the interaction between them. At low P level, dual inoculation with arbuscular mycorrhizal fungi (AMF) and phosphate dissolving bacteria (PDB) significantly increased plant growth and P accumulation in plant tissue. No significant difference in plant growth, root length, and P uptake were observed between dual inoculation with PDB and AMF, and inoculation with AMF alone at low P level. Therefore, mycorrhizal fungi were more effective in increasing plant growth, root length, and P uptake than inoculation with PDB. At high P level, the inoculation with AMF and PDB had no effect on plant growth. The fifth experiment was aimed to compare the response of onion and leek plants to the inoculation with mycorrhizae at two levels of P. In this experiment, it was observed that, plants inoculated with mycorrhizal fungi had higher P use efficiency compared to the other plants without mycorrhizal fungi. Based on the results of the present study, we can recommend that plants inoculated with mycorrhizal fungi are high P efficiency comparing to plants without mycorrhizae.

CONTENTS

	<u>Page</u>
Chapter 1: INTRPDUCTION	1
Chapter 2: REVIEW OF LITERATURE	5
1. Phosphorus efficiency.	5
1.1. Phosphorus utilization efficiency	6
1.2. Phosphorus uptake efficiency	6
1.3. Factors influencing P uptake efficiency	7
1.3.1. Morphological root characteristics.	7
1.3.1.1. Root growth.	8
1.3.1.2. Root hair growth	9
1.3.1.3. Cluster roots.	11
1.3.2. Physiological root characteristics	11
1.3.2.1. Exudation of organic acid.	11
1.3.2.2. Change in the rhizosphere pH	12
1.3.2.3. Ecto-enzyme	13
1.3.3. Association of roots with mycorrhizal fungi	14
2. The role of mycorrhizal fungi in agriculture	16
2.1. Introduction.	16
2.2. Importance of A-mycorrhizal fungi	18
2.3. Mechanism of A-mycorrhizal fungi and acquisition of P	20
3. The role of phosphate dissolving bacteria (PDB) in	
agriculture	22
4. The interaction between arbuscular mycorrhizal fungi	
(AMF) and phosphate dissolving bacteria (PDB)	24
5. Modeling phosphorus uptake of plants	25
5.1. Soil properties.	28
5.2. Kinetics of ion uptake	30
5.3. Morphological root characteristics	30

5.4. Assessing relative importance of parameters on P uptake	32
Chapter 3: MATERIALS AND METHODS	
1. Materials	33
1.1. Peat substrate	33
1.2. Soil	33
1.3. Cultivars	33
1.4. Mycorrhizae inoculation	34
1.5. Phosphate dissolving bacteria.	34
1.6. Chemical fertilizers	34
2. Experimental	34
2.1. Evaluation of inoculated carrot plant by two strains of A-	
mycorrhizae	34
2.2. Evaluation of inoculated carrot with A-mycorrhizae at	
narrow range of available P in soil	36
2.3. Evaluation of inoculated carrot with A-mycorrhizae at	
wide range of available P in soil	37
2.4. Evaluation of inoculated carrot with A-mycorrhizae (AM)	
and phosphate dissolving bacteria (PDB) at the narrow	
range of available P	38
2.5. Evaluation of inoculated onion and leek plants with A-	
mycorrhizae (AM) at two P levels	38
3. Analytical procedures	39
3.1. Soil analysis	39
3.1.1. Available phosphorus in soil	39
3.1.2. Phosphorus concentration in soil solution	40
3.1.3. Effective diffusion coefficient	41
3.1.4. Buffer power	41
3.1.5. Potassium	42
3.1.6. Magnesium	42

3.2. Plant analysis	42
3.2.1. Shoot phosphorus content	42
3.3. Root morphology measurements	43
3.3.1. Root length	423
3.3.1.1. Comparison between two methods to measure root	
length	44
3.3.2. Root radius.	45
3.3.3. Root surface area	46
3.3.4. Mean half distance between roots	46
3.3.5. Root growth rate	46
4. Root physiology measurements	47
4.1. Michaelis-Menten Kinetics	47
4.2. Estimation of maximum P influx	47
4.3. Michaelis-Menten constant	48
4.4. Minimum concentration of P in soil solution	48
4.5. Water influx	48
5. Mycorrhizal measurements	49
5.1. Cleaning and staining roots	49
5.2. Hyphae length	50
5.2.1. Hyphae extraction and staining procedure	50
5.2.2. Measuring the length of hyphae	52
5.2.3. Sample storage for hyphae length measurement	54
5.2.4. Evaluation of the pore size of the nylon filter	55
5.3. Hyphae radius	56
5.4. Hyphae surface area	56
6. Modeling and simulation of P uptake	56
7. Statistical methods	57
Chapter 4: RESULTS	58
1. Evaluation of inoculated carrot plant by two strains of A-	

mycorrhizae	58
1.1. Carrot yield	58
1.2. Root length.	59
1.3. Hyphae length	60
1.4. Phosphorus concentration in shoot	61
1.5. Phosphorus uptake of carrot	62
2. Evaluation of inoculated carrot with A-mycorrhizae at	
narrow range of available P in soil	64
2.1. Carrot yield	64
2.2. Root length density	67
2.3. Root: shoot ratio	68
2.4. Hyphae length density	69
2.5. Phosphorus concentration in shoot	70
2.6. Phosphorus uptake of carrot	71
2.7. Prediction of P uptake by mechanistic simulation model	72
2.7.1. Relationship between observed and predicted P uptake	73
2.7.2. Contribution of mycorrhizae hyphae to P uptake	74
2.7.3. Phosphorus concentration profiles at root surfaces	75
2.7.4. Sensitivity analysis	77
2.7.4.1. Sensitivity of P uptake to I _{max}	77
2.7.4.2. Sensitivity of P uptake to K _m	82
2.7.4.3. Sensitivity of P uptake to C _{min}	83
2.7.4.4. Sensitivity of P uptake to P in soil solution	85
3. Evaluation of inoculated carrot with A-mycorrhizae at wide	
range of available P in soil	88
3.1. Carrot yield	88
3.2. Root length density	91
3.3. Root: shoot ratio	92
3.4. Hyphae length density	94

3.5. Phosphorus concentration in shoot	94
3.6. Phosphorus uptake of carrot	95
3.7. Prediction of P uptake by mechanistic simulation model	97
3.7.1. Relationship between observed and predicted P uptake	98
3.7.2. Contribution of mycorrhizae hyphae to P uptake	99
3.7.3. Phosphorus concentration profiles at root surfaces	100
4. Evaluation of inoculated carrot with A-mycorrhizae (AM)	
and phosphate dissolving bacteria (PDB) at the narrow	
range of available P	103
4.1. Carrot yield	103
4.2. Root length density	105
4.3. Root: shoot ratio	106
4.4. Hyphae length density	108
4.5. Phosphorus concentration in shoot	109
4.6. Phosphorus uptake of carrot	110
5. Evaluation of inoculated onion and leek plants with A-	
mycorrhizae (AM) at two P levels	112
5.1. Shoot yield	112
5.2. Root length	113
5.3. Root: shoot ratio	114
5.4. Hyphae length of mycorrhizae	116
5.5. Phosphorus concentration in shoot	117
5.6. Phosphorus uptake by plant	118
Chapter 5: DISCUSSION	120
1. Visual differences in growth plants	120
2. Yield and shoot P content	120
3. Phosphorus uptake efficiency	125
3. 1. Root growth	125
3. 2. Mycorrhizal fungi infection	128

4. Difference between two strains of <i>Glomus intraradices</i>	129
5. The interaction between arbuscular mycorrhizal fungi	
(AMF) and phosphate dissolving bacteria (PDB)	130
6. Relationship between observed and predicted P uptake	131
6.1. Sensitivity of P uptake predicted to physiological root	
characteristics	134
6.2. Sensitivity of predicted P uptake to soil solution P	
concentration	137
Chapter 6 : SUMMARY	139
Chapter 7: REFERENCES	146
Chapter 8: ARABIC SUMMARY	

LIST OF FIGURES

	Page No
Fig. (1): Root length (m/plant) of carrot as affected by inoculation	1
with mycorrhizae. (NM = without mycorrhizae; M=	=
inoculation with mycorrhizae; different letters indicate	;
significant differences, P< 0.05)	45
Fig. (2): Evaluation of two methods to store soil sample to calculate	;
hyphae length (mg P / kg soil) of carrot plant. (differen	t
letters indicate significant differences, P<0.05)	54
Fig. (3): Shoot dry matter (g / plant) of carrot plant as affected by	7
inoculation with different strains of mycorrhizae.(NM=	=
without mycorrhizae; M49 and M301 = inoculated with two)
strains of mycorrhizae 49 and 301; d.m. = dry matter	
different letters indicate significant differences between two)
strains of mycorrhizae and without mycorrhizae	,
P≤0.05)	58
Fig. (4): Storage root dry matter (g / plant) of carrot plant as affected	l
by inoculation with different strains of mycorrhizae.(NM=	=
without mycorrhizae; M49 and M301 = inoculated with two)
strains of mycorrhizae 49 and 301; d.m. = dry matter	•
different letters indicate significant differences between two)
strains of mycorrhizae and without mycorrhizae, P≤0.05)	59
Fig. (5): Root length (m / plant) of carrot plant as affected by	7
inoculation with different strains of mycorrhizae.(NM=	=
without mycorrhizae; M49 and M301 = inoculated with two)
strains of mycorrhizae 49 and 301; d.m. = dry matter	•
different letters indicate significant differences between	1

	with two strains of mycorrhizae and without mycorrhizae,	
	P≤0.05)	60
Fig. (6):	Hyphae length (m / g dry soil) of carrot plant as affected by	
	inoculation with different strains of mycorrhizae. (NM=	
	without mycorrhizae; M49 and M301 = inoculated with two	
	strains of mycorrhizae 49 and 301; different letters indicate	
	significant differences between with two strains of	
	mycorrhizae and without mycorrhizae, P≤0.05)	61
Fig. (7):	P conc. (mg P / g d.m.) of carrot plant as affected by	
	inoculation with different strains of mycorrhizae. (NM=	
	without mycorrhizae; M49 and M301 = inoculated with two	
	strains of mycorrhizae 49 and 301; d.m. = dry matter;	
	different letters indicate significant differences between	
	with two strains of mycorrhizae and without mycorrhizae,	
	P≤0.05)	62
Fig. (8):	P uptake (mg P / plant) of carrot plant as affected by	
	inoculation with different strains of mycorrhizae. (NM=	
	without mycorrhizae; M49 and M301 = inoculated with two	
	strains of mycorrhizae 49 and 301; different letters indicate	
	significant differences between with two strains of	
	mycorrhizae and without mycorrhizae, P≤0.05)	63
Fig. (9):	Influence of mycorrhizae as affected by P supply on carrot	
	yield.(NM = without mycorrhizae, M = inoculated with	
	mycorrhizae, different letters indicate significant	
	differences; small letters between P levels, capital letters	
	between NM and M, P≤0.05)	66

Fig. (10): Influence of mycorrhizae as affected by P supply on carrot
root length density (cm/cm ³). (NM= without mycorrhizae,
M = inoculated with mycorrhizae; different letters indicate
significant differences; small letters between P levels;
capital letters between NM and M, P≤0, 05)
Fig. (11):Influence of mycorrhizae as affected by P supply on
root/shoot ratio of carrot (NM = non-mycorrhizae, M =
inoculated with mycorrhizae; different letters indicate
significant differences; small letters between P levels;
capital letters between NM and M, $P \le 0.05$)
Fig. (12):Influence of mycorrhizae as affected by P supply on
mycorrhizae hyphae density (cm/cm ³) of carrot. (different
letters indicate significant differences between P levels,
P≤0.05)
Fig. (13): Influence of mycorrhizae as affected by P supply on P
concentration in shoot d.m (NM = = without mycorrhizae,
M = inoculated with mycorrhizae, different letters indicate
significant differences; small letters between P levels;
capital letters between NM and M, P≤0.05)
Fig. (14): Influence of mycorrhizae as affected by P supply on P
uptake of carrot. (NM = without mycorrhizae, M =
inoculated with mycorrhizae, different letters indicate
significant differences; small letters between P levels,
capital letters between NM and M, P≤0.05)
Fig. (15): Relationship between observed and predicted P uptake
(μmol/plant) of carrot (NM = non-mycorrhizae, M =
inoculated with mycorrhizae)

Fig. (16): Contribution of mycorrhiza hyphae and carrot root to

	predict of P uptake as affected by P supply
Fig. (17): Phosphorus concentration profile at the root surface of
	carrot with and without mycorrhizae (NM = non-
	mycorrhizae, M = inoculated with mycorrhizae, P1 = 61 mg
	P-CAL /kg soil, P5 = 218 mg P-CAL / kg soil)
Fig. (18)	: Influence of changing I_{max} on predicted P uptake of carrot
	without mycorrhizae (predicted P uptake were calculated at
	lowest (P1) and highest (P5) P supply level
Fig. (19)	: Influence of changing I_{max} on predicted P uptake of carrot
	inoculated with mycorrhizae (predicted P uptake was
	calculated at lowest (P1) and highest (P5) P supply level
Fig. (20a	a): Phosphorus concentration profiles at the surface of carrot
	without mycorrhizae as influenced by changing in I_{max}
	(Cl/Cli is the ratio of the actual soil solution P concentration
	after 26 days of growth to the initial P concentration, as
	calculated at the lowest level of P supply, I_{max} = maximum P
	uptake rate)
Fig. (20l	e): Phosphorus concentration profiles at the surface of carrot
	without mycorrhizae as influenced by changing in Imax
	(Cl/Cli is the ratio of the actual soil solution P concentration
	after 26 days of growth to the initial P concentration, as
	calculated at the highest level of P supply, I_{max} = maximum
	P uptake rate)
Fig. (21a	a): Phosphorus concentration profiles at the surface of carrot
	inoculated with mycorrhizae as influenced by changing in
	Imax (Cl/Cli is the ratio of the actual soil solution P
	concentration after 26 days of growth to the initial P
	concentration, as calculated at the lowest level of P supply,
	I _{max} = maximum P uptake rate)