IMMUNOLOGICAL AND HISTOPATHOLOGICAL PATTERN OF TRICHINELLA-SPIRALIS INFECTION IN THE EXPERIMENTAL ANIMALS

Thesis
Submitted in Partial Fulfillment Of M.sc.Degree In Parasitology

By

Muhammad Muhammad Abd El-Mutaleb Ibraheem (M.B.,B.Ch.)

Supervisors

Prof .Dr .Nadia Aly El-Dib

Professor of Parasitology
Faculty of Medicine –Cairo University

Dr. Eman Yassien Shoeib

Lecturer of Parasitology
Faculty of Medicine –Cairo University

Dr .Azza Hasan Abbas

Fellow of Parasitology National Hepatology And Tropical Medicine Institute

> Faculty of Medicine Cairo University 2009

النمط المناعي و النسيجي المرضي للإصابة بالديدان الشعرية الحلزونية في حيوانات التجارب

رسالة مقدمة من

الطبيب: محمد عبد المطلب إبراهيم الطبيب: محمد محمد عبد المطلب إبراهيم الطفيليات الماجستير في علم الطفيليات

تحت إشراف

أ.د/ نادية علي الديب

أستاذ الطفيليات - كلية الطب - جامعة القاهرة

د/ إيمان ياسين شعيب مدرس الطفيليات -كلية الطب-جامعة القاهرة

د/عزة حسن عباس

زميل الطفيليات - المعهد القومى للأمراض المتوطنة والكبد

كلية الطب جامعة القاهرة ٢٠٠٩

<u>Acknowledgment</u>

I wish to express my deepest gratitude to: Prof. Dr. Hoda Helmy (The head of Parasitology department, Faculty of Medicine, Cairo University), Prof. Dr. Olfat Mohamed El-Matarawy (The previous head of Parasitology department, Faculty of Medicine, Cairo University), and to Prof. Dr. Nadia Aly El-Dib (Professor of Parasitology, Faculty Of Medicine Cairo University), to whom I am grateful for their generous cooperation, close supervision, and valuable advices.

Iam greatly thankful to Dr. Eman Yassien Shoaib, (Lecturer of Parasitology Faculty of Medicine Cairo University), and to Dr. Azza Hasan Abbas (Fellow of parsitology, National hepatology and tropical medicine researches institute), for their kind observations and precious guidance.

Special thanks also to:

Prof. Dr. Hussein Omar (Professor of Parasitology, Faculty of veterinary Medicine, Cairo University), Prof. Dr. Suzan Thabet (Consultant of Pathology, National hepatology and tropical medicine researches institute), Dr. Sahar Abd-El Hameed (Assistant professor of Pathology, Faculty of Medicine, Cairo University), Dr. Noha Abd-El Hafeth (Assistant professor of pathology, Medical research

Centre), Dr. Suhir Mahmood, and Dr. Ibraheem Rabie (assistant Professors of Parasitology, Theodore Bilharze institute), for their generous help and support through the work.

Last but not least, I would like to thank Prof. Dr Waheed Doss (The head of National hepatology and tropical medicine researches institute), my family, friends and colleagues for their valuable help and support.

INTRODUCTION

The genus *Trichinella* is a parasitic nematode in skeletal muscle cells of a wide variety of vertebrate hosts (Webster et al., 2006 and Zimmer et al., 2008). *Trichinella* is quite different from many other helminthes because all stages of development (adult &larvae) occur within a single host (Pozio et al., 2000). Studies on isolates of *Trichinella spiralis* from arctic, temperate, and tropical areas have confirmed that there are major differences related to their genetic structure and overall biology (Gamble et al., 2007). *Trichinella* forms a complex of at least eight species, all of which appear to be the same morphologically but based on DNA studies and comparative features are actually quite different (Cortes et al., 2002). Infection occurs by eating contaminated muscles which contain infective larvae (meat borne infection) which present in both industrialized and non industrialized countries (Pozio et al., 1998, Kociecka et al., 2004, and Ozdemir et al., 2002).

Trichinosis belong to a group of diseases characterized by remarkable variety of symptoms and signs .The severity of the infection depends both on the parasite and the host.The typical findings are fever, facial edema particularly around the eye, side of nose, temples and hands. Pain, swelling and weakness of muscles, Other less common symptoms include headache, flushing of face,conjunctivitis, and anorexia, lymph nodes frequently become enlarged and tender,

Damage of the muscles in this stage may cause difficulty in eye movements, breathing, chewing, swallowing and speech or in the use of the extremities (Plorde et al., 1994, and Pozio et al., 2001).

Diagnosis of Trichinosis is depending on the severity of the infection which can mimic many other conditions (van Knapen et al., 1981). Trichinosis should always be included in the differential diagnosis of any patient with periorbital oedema, fever, myositis, and eosinophilia, regardless of whether a complete history of raw or poorly cooked pork consumption is available (Murrell et al., 1986). Respecting the fact that it is very rare to recover adult worms or larvae from stool or other body fluids even if the patient has diarrhea, it was very important to find an accurate methods of laboratory diagnosis to over come the unreliability of the direct laboratory methods and the hazards of muscle biopsy examination, therefore the importance of the serological tests for detection of *Trichinella- spiralis* antibodies in the sera of the suspected cases emerges (van Knapen et al., 1981). Serological tests include: complement fixation test, haemagglutination test, ring precipitation test, flocculation test, indirect fluorescence antibody test, counter current immunoelectrophoresis and ELISA (Gamble et al., 1983, Murrell et al., 1986 & van Knapen et al., 1981). Among many researches which have been done for detection of the specific antigen for Trichinella-spiralis. Both crude larval antigen and excretory -secretory antigens were found to be highly specific for detection of Trichinella-spiralis antibodies in serum (Taylor et al.,

1980). Each test gives different degrees of sensitivity and specificity. Sodium Dodecyl Sulphate polyacrylamide gel elecrophoresis was able to fractionate *Trichinella-spiralis* antigen into more purified fragments. Using Enzyme-linked immunotransfer blot (EITB), an accurate mean of detection specific anti *Trichinella -spiralis* antibodies is introduced (Taylor et al., 1980 and Faubert et al., 1985).

Aim Of The Work

This study aims to investigate the potential use of detection of the Anti *Trichinella-spiralis* circulating antigens in comparison to antibodies as a diagnostic tool in experimental Trichinosis in the laboratory bred animals and to correlate the findings with histopathological examination of the infected animals.

<u>Index</u>

	Page
 Introduction and aim of work 	1
Review of literature	4
 Materials and methods 	73
• Results	103
 Discussion 	122
 Summary and conclusion 	131
 References 	135
Arabic summary	

List of abbreviations

BSA	Bovine serum albumin	
BF	bentonite flocculation	
DNA	Deoxynuclic – acid	
EITB	Enzyme-linked immunotransfer	
	blot	
ELISA	Enzyme- linked immunosorbent	
	assay	
ESA	Excretory /secretory Antigen	
HRP	Horseradish peroxidase	
IgA	Immunoglobulin-A	
IgE	Immunoglobulin-E	
IgG	Immunoglobulin-G	
IgM	Immunoglobulin- M	
KD	Kilo Dalton	
M	Mol	
mAbs	monoclonal antibodies	
N	Normal	
OD	Optic density	
OPD	O-phenylene dopamine	
	dichloride	

PBS Phosphate Buffer saline

PBS/E Phosphate buffered –saline for

ELISA

PBS/T Phosphate buffered –saline for

Tween

PCR Polymerase chain reaction

RIA Radioactive immunoassay

SDS-PAGE sodium dodecyl sulphate

polyacrylamide gel

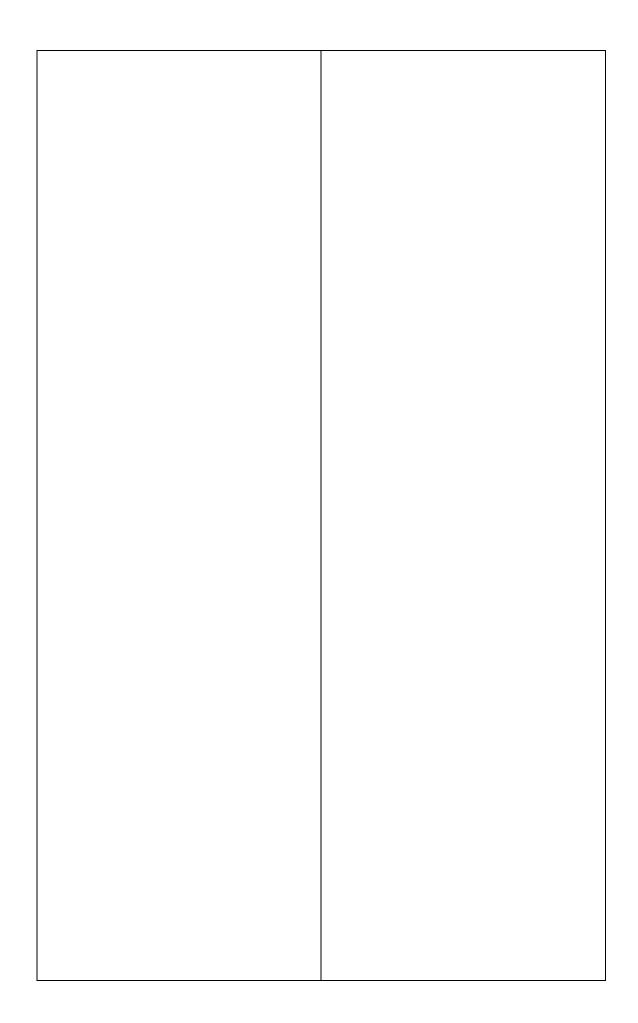
electrophoresis

T. britovi Trichinella- britovi

T.murelli Trichinella- murelli

T.nativa Trichinella- nativa

T. nelsoni Trichinella- nelsoni


T.papuae Trichinella- papuae

T.pseudospiralis Trichinella-pseudospiralis

T.spiralis Trichinella-spiralis

T. zimbabwensis Trichinella- zimbabwensis

TSL Trichinella-spiralis larva

-

List of Figures

	Page
1. Morphology of adult <i>Trichinella –Spiralis</i> male	8
2. Morphology of adult <i>Trichinella –Spiralis</i> female	9
3. Morphology of <i>Trichinella –Spiralis</i> larva	10
4. Life cycle of <i>Trichinella-spiralis</i>	17
5. Geographical distribution of <i>Trichinella</i> species	25
6. Infective first stage larva of Trichinella-spiralis in its nurse	43
cell in muscle tissue	
7. Column of sieves arranged in descending order of mesh	80
openings 425 μ , 280 μ , 130 μ , used in the collection of T.	
spiralis larvae	
8. Ultrasound tissue homoginizer", used in the preparation of	81
T. spiralis crude larval antigen.	
9. Polystyrene microtitre plate (96- flate bottomed wells, M	88
129 A Dynatech), contains sera of some infected rats.	
10. Trichinella-spiralis coated wells with T.spiralis antigens,	98
used in the detection of <i>T. spiralis</i> IgG in the experimental	
rats by ELISA	
11.Inflammatory reaction in the heart muscle of an infected	107
experimental rat, magnified to 200X.	
12.Inflammatory reaction in the skeletal muscle of an infected	107
experimental rat, magnified to 100X.	

13.Inflammatory reaction in the intestine of an infected	
experimental rat, magnified to 200X	108
14. Encysted <i>T. spiralis</i> larvae in the skeletal muscles of	
experimental infected rats magnified to 100 X, the larvae	111
are surrounded by an inflammatory reaction.	
15. The results of the use of sandwich ELISA in the detection	
of circulating T.spiralis antigen in the sera of infected	113
animals subgroups with Trichinella-spiralis, as well as the	
control group of animals.	
16. The results of <i>T. spiralis</i> IgG detected by ELISA in the	
sera of the studied infected animals subgroups with	114
Trichinella-spiralis, as well as the control group of animals	
17. The intensity of the heart inflammatory reactions in the	
studied infected animals subgroups infected with	116
Trichinella-spiralis, as well as the control group of animals.	
18. The intensity of the intestinal inflammatory reactions in the	
studied infected animals subgroups infected with	118
Trichinella-spiralis, as well as the control group of animals	
19. The intensity of infection with encysted larvae of	
Trichinella-spiralis in the thigh muscles of the studied	119
infected animals subgroups, as well as the control group of	117
animals.	
20. The intensity of the inflammatory reaction in the thigh	
muscles of the studied infected animals subgroups with	121
Trichinella-spiralis, as well as the control group of animals	
, , , , , , , , , , , , , , , , , , , ,	