

# 





ثبكة المعلومات الجامعية





# جامعة عين شمس

التوثيق الالكتروني والميكروفيلم



نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات



يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %



ثبكة المعلومات الجامعية









Ain-Shams University Faculty of Engineering

# INVESTIGATION OF THE QUANTUM CONDUCTANCE CHARACTERISTICS OF SOME MESOSCOPIC DEVICES

#### A Thesis

Submitted in Partial Fulfillment

For the award of the M.Sc. Degree in Engineering Physics

## By Walid Abd El-Monem Zein

B.Sc. Ain-Shams University, 1997

## Supervisors

Prof. Dr. Omar A.Omar Professor of Solid State Physics Faculty of Engineering Ain-Shams University, Egypt Prof. Dr. Adel H.Phillips
Professor of Theoretical Solid State Physics
Faculty of Engineering
Ain-Shams University, Egypt

To
Engineering Physics and Math. Dept.
Faculty of Engineering, Ain-Shams University
Cairo (2001)

9774

s of

<u>91</u>..

.

## Ain Shams University Faculty of Engineering

Name:

Walid Abd El-Monem Zein.

Subject:

Investigation of the Quantum Conductance Characteristics of

Some Mesoscopic Devices.

Degree:

M.Sc. thesis Ain Shams University, Faculty of Engineering,

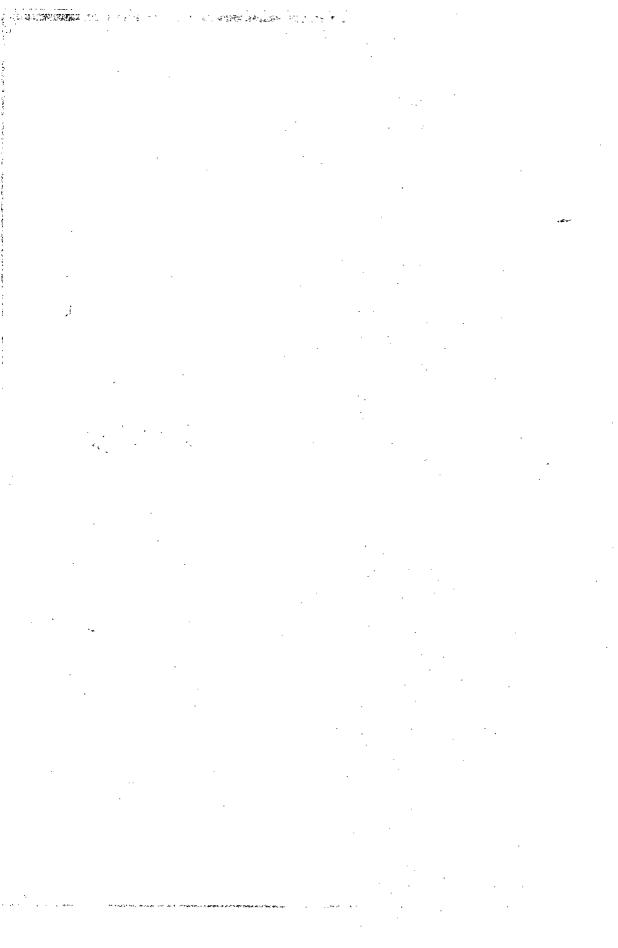
Engineering Physics and Math.Dept.,2001.

## Refereeing Committee:

• Prof. Dr. Raafat Kamel Wassef,

Faculty of Science, Cairo University.

Prof. Dr. Ali Mohamed Khalaf,


Faculty of Science, Al-Azhar University.

• Prof. Dr. Omar A. Omar,

Faculty of Engineering, Ain Shams University.

• Prof. Dr. Adel Helmy Phillips,

Faculty of Engineering, Ain Shams University.



## **ACKNOWLEDGMENT**


First Of All, Thanks and indebtedness are due to ALLAH who made this work possible.

I am deeply indebted to Prof. Dr. *Omar A.Omar* and Prof. Dr. *Adel H.Phillips*, Faculty of Engineering, Ain-Shams University, for, their encouragement, supervising, fruitful discussions, valuable helpful, providing facilities, guidance throughout this work, and the critical reading of manuscript.

I am thankful to all members of Engineering Physics and Math.

Dept. Faculty of Engineering, Ain-Shams University.

Walid Abd El- Monem Zein 2001



### **ABSTRACT**

Name: Walid Abd El-Monem Zein.

Subject: Investigation of the quantum conductance characteristics of some mesoscopic devices.

Degree: M.Sc thesis Ain-Shams university, Faculty of Engineering, Engineering physics and Math. Dept. 2001.

In the present thesis the quantum transport characteristics of mesoscopic system under the effect of magnetic field and in the Coulomb blockade regime are studied. Such mesoscopic system is modeled as two semiconductor quantum dots coupled to superconducting leads via two quantum point contacts.

The conductance of such mesoscopic junction has been obtained in terms of the Andreev reflection tunneling probability by using the Landauer-Büttiker equation. This Andreev reflection tunneling probability was deduced by solving the Bogoliubov-deGennes (BdG) equation, describing the electron transport through the junction. Numerical calculation has been performed, treating the electron transport as a stochastic process.

The obtained results show that the electron transport through such mesoscopic device has a coherent property, so as the devices size is less than the mean free path of electrons and the corresponding coherence length of Cooper pair. An important result was obtained which shows the deviation of the periodic oscillation of the dependence of the conductance on the magnetic field from the conventional quantum flux. However, it should be modified by a parameter, which is very sensitive to the quantum dot size. The periodic oscillation of the conductance with the

gate voltage gives an evidence of the role of discrete states and their coexistence with coulomb charging energy in our mesoscopic device.

The second part of the thesis was devoted for computing the quantum noise spectrum and its dependence on the magnetic field and quantum dot size. This quantum noise spectrum has been deduced in terms of the current driven by an AC-voltage. The transimpedance of the equivalent mesoscopic device has been also obtained and computed at different frequencies. The frequency dependence of the quantum noise spectrum at different temperatures, magnetic field and quantum dot size show a stochastic resonance trend which is characterized for nonlinear quantum systems.

In general the present results found a good concordant with those in the literature. Such investigations on mesoscopic system in the present thesis might be valuable for nanotechnology of nanoelectronic devices. The thesis contains four chapters. The first one reviewed the historical works on quantum dots. The second chapter treats the theory of the considered mesoscopic junction. The numerical calculations and results are given in chapter three. Chapter four summarizes the main conclusions.

<u>Key Words.</u> Mesoscopic device-Quantum dot-Andreev reflection-Superconductor (S)- semiconductor (Sm) interface-Coulomb blockade-Quantum noise spectrum.

## ACKNOWLEDGMENT ABSTRACT CONTENTS

| Chapter I                                                 |         |  |  |  |
|-----------------------------------------------------------|---------|--|--|--|
| Introduction                                              | 1       |  |  |  |
| I.1 Two- dimensional electron gas (2DEG)                  | 2       |  |  |  |
| I.2 Superconductor-Semiconductor Junction                 | 4       |  |  |  |
| I.2.1 Andreev-Reflection                                  | 5       |  |  |  |
| I.3 Quantum Point Contact                                 | 7       |  |  |  |
| I.4 Quantum Dot                                           | 9<br>17 |  |  |  |
| I.4.1 A Model for the Quantum Dot                         |         |  |  |  |
| I.5 Coulomb-blockade oscillations in the conductance of a |         |  |  |  |
| quantum dot                                               | 18      |  |  |  |
| I.6 Quantum Dot Laser                                     | 22      |  |  |  |
| I.7 Photon-assisted tunneling                             | 26      |  |  |  |
| Chapter II                                                |         |  |  |  |
| Theoretical Treatment                                     |         |  |  |  |
| Part I                                                    | 31      |  |  |  |
| Part II                                                   | 42      |  |  |  |
| Chapter III                                               |         |  |  |  |
| Numerical Calculation and Results                         |         |  |  |  |
| Part I                                                    | 48      |  |  |  |
| Part II                                                   | 66      |  |  |  |
| Chapter IV                                                |         |  |  |  |
| Conclusion                                                | 73      |  |  |  |
| References                                                | 77      |  |  |  |
| List of Publications                                      | 82      |  |  |  |
| Arabic Abstract                                           |         |  |  |  |