Role of conventional MRI, and Diffusion tensor imaging tractography in evaluation of congenital brain malformation Essay

Submitted for Partial fulfillment of the Master Degree in Radiodiagnosis by

Amany Abass Hussien mohamed M.B.B.Ch.

Supervised by Prof. DR. Salwa Taha Ismaeil

Professor of Radiodiagnosis

Faculty of Medicine – Ain Shams University

Prof. Dr. Abeer Maghawry Abd elhameed

Professor of Radiodiagnosis

Faculty of Medicine – Ain Shams University

2012

دور الرنين المغنطيسى التقليدى ورسم خرائط مسارات الاعصاب بالتصوير الانتشارى الموتر فى تقييم التشوهات الخلقيه بالمخ

رسالة مقدمه

توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمه من

الطبيبة / أماني عباس حسين محمد بكالوريوس الطب والجراحة

تحت إشراف الاكتورة/ سلوى طه اسماعيل

أستاذ الأشعة التشخيصية كلية الطب- جامعة عين شمس

الأستاذة الدكتورة/ عبير مغاورى عبد الحميد

أستاذ الأشعة التشخيصية كلية الطب - جامعة عين شمس كلية الطب

جامعة عين شمس

2012

Acknowledgement

First of all, Thanks to Allah, whose help I always seek and without his willing I will achieve nothing.

I would like to express my sincere gratitude and deep thanks to

Prof. Dr. Salwa Taha Ismaeil

Professor of Diagnostic Radiology, Faculty of Medicine, Ain-Shams University for her guidance, helpful advice and constructive supervision of this work.

Words could not express the feeling of gratitude and respect I carry to.

Prof. Dr. Abeer Maghawry Abdelhameed

Professor of Diagnostic Radiology, Faculty of Medicine, Ain-Shams University for her concern, continuous advice, and encouragement which allowed completion of this study.

I would like to express my appreciation, respect and thanks for my family, for their assistance, prayers and encouragement.

List of Contents

1) List of

	abbreviationsI
2)	List of figuresII
3)	List of tablesIII
4)	Introduction and aim of
	work1
5)	Anatomical considerations of white
	matter fiber
	tracts4
6)	Pathological
	considerations35
7)	Physical
	considerations77
8)	Technique of diffusion tensor imaging
	tractography of the
	brain89
9)	Manifestations of conventional MRI and
	diffusion tensor imaging tractography

	in congenital brain malformation
	98
10) Summary and conclusion
	150
11) References1
	53
12)	Arabic summary.

	Abbreviations
AC	Anterior commissure
ACC	Agenesis of corpus callosum
ACR	Anterior region of corona
	radiate
ADC	Apparent diffusion coefficient
ALIC	Anterior limb of internal
	capsule
CBT	Corticobulbar tract
CG	Cingulum
CSF	Cerebrospinal fluid
СР	Cerebral peduncle

CST	Corticospinal tract
DCN	Deep cerebellar nuclei
DCSP	Decussation of superior
	cerebellar peduncle
DTI	Diffusion tensor imaging
EPI	Echo-planar imaging
FA	Fraction anisotropy
FACT	Fiber assignment by
	continuous tracking
FMRI	Functional magnetic
	resonance imaging.
FSE	Fast spin-echo
FT	Fiber tracking
FX	Fornix
ICP	Inferior cerebellar peduncle
IFO	Inferior fronto-occipital
	fasciculus
ILF	Inferior longitudinal fasciculus
МСР	Middle cerebellar peduncle
ML	Medial lemniscus

NF-1	Neurofibromatosis type I
NF-2	Neurofibromatosis type 2
ОТ	Optic tract
PCR	Posterior region of corona
	radiate
PLIC	Posterior limb of internal
	capsul
PMG	Polymicrogyri
PYT	Pyramidal tract
SCR	Superior region of corona
	radiate
SOD	Septo-optic dysplasia
SFO	Superior fronto-occipital
	fasciculus
SLF	Superior longitudinal
	fasciculus
SN	Substantia nigra
SNR	Signal to noise ratio
ST	Stria terminalis
SWS	Sturge-Weber Syndrome

TS	Tuberous sclerosis
UBO	Unidentified bright objects

List of figures		
Fig.No.	Title	Page No.
1	Normal brain development with	5
2	age Superior and inferior occipitofrontal fasciculi and uncinate fasciculus	10
3	Superior Longitudinal Fasciculus,	12
4	Inferior longitudinal fasciculus	14
5	limbic system tracts	15

6	Association fibers	17
7	2D association fiber	19
8	projection fibers	21
9	3D reconstruction results of	22
	projection fibers	
10	10 2D projection fibers	24
11	2D and 3D of corpus callosum	25
12	3D depictions of callosal fibers	27
13	Corpus callosum	28
14	illustration of midbrain and	30
	illustration of mid pons	
15	Four viewing angles of 3D	32
	depictions of brainstem fibers	
16	occipital cephalocele	39
17	chiari II malformation	41
18	lobar holoprosencephaly,	43
19	semilobar holoprosencephaly	44
20	cerebellar hypoplasia	46
21	dandy- walker complex	48
22	Joubert's syndrome	49
23	Rhombencephalosynapsis	51
24	septo-optic dysplasia	53
25	Callosal agenesis	56
26	Hemimegalencephaly	59
27	Neurofibromatosis I	61
28	Neurofibromatosis type 2	62
29	Tuberous sclerosis	64
30	Sturge-Weber Syndrome	65
31	Von Hippel-Lindau Syndrome	66
32	Schizencephaly	68
33	classic lissencephaly	71
34	Subependymal Heterotopia	72

35	Focal Heterotopia	73
36	Band Heterotopia	74
37	Polymicrogyria	76
38	displacement distribution	80
39	cellular elements affect diffusion	81
	anisotropy	
40	diffusion tensor model	83
41	Extraction of scalar values from	84
	diffusion tensor imaging	
42	FACT algorithms	86
43	limitations of tractography	88
44	diffusion weighted spin echo	92
	sequence	
45	diffusion tensor based images	94
46	Tractography	95
47	Streamline and Probabilistic	97
	tractography	
48	conventional MRI chiari II	101
49	tractography of chiari II	102
50	MRI holoprosencephaly	103
51	MRI and DTI in an infant with	104
	semilobar holoprosencephaly	
52	Color map of holoprosencephaly	106
53	cerebellar hypoplasia	107
54	MRI of Dandy-Walker	109
55	MRI of Joubert Syndrome	110
56	DTI and tractography of joubrt	112
	syndrome	
57	MRI Rhombencephalosynapsis	113
58	tractography of	114
	Rhombencephalosynapsis	
59	MRI and tractography of SOD	116

60	corpus callosum dysgensis	118
61	partial and complete agenesis of	120
	corpus callosum	
62	Probst bundlesTractography	121
63	microcephaly	122
64	MRI and tractography of	124
	hemimegalencephaly	
65	65 MRI (NF-1)	126
66	MRI (NF-2)	127
67	MRI (TS)	129
68	tractography of (TS)	130
69	MRI of (SWS)	132
70	tractography of (SWS)	133
71	MRI open lip Schizencephaly	136
72	tractography open lip	138
	schizencephaly	
73	MRI and tractography of	140
	lissencephaly	
74	MRI ,FA , color map and	143
	tractography of lissencephaliy	
75	MRI Heterotopia	144
76	FA Heterotopia	145
77	tractography of heterotopia	146
78	MRI polymicrogyri	148
79	tractography of polymicrogyri	149

List of tables		
Tab.1	Myelination Landmarks by Age	6
Tab .2	Classifications of congenital brain anomalies	36
Tab.3	DTI pulse sequence	93

Introduction

Congenital brain malformations occur as a result of embryogenesis impairment and present as an anatomic defect or destructive brain lesion. It is very difficult to make a diagnosis of congenital brain malformation, based on clinical findings, use of MRI is essential in these cases. A child may have numerous brain malformations, frequently accompanied by congenital abnormalities of other organs and systems due to chromosomal balance impairment or noxious exposures during embryogenesis. Exogenous factors as well as hypoxia cause developmental defects of neural tissue, and focal and diffuse brain damage. MRI allows distinguishing of changes that have occurred due to chromosomal abnormalities and due to noxious exogenous factors (*Ozerova*, 2009).

Diffusion magnetic resonance (MR) imaging is evolving into a potent tool in the examination of the central nervous system. Although it is often used for the detection of acute ischemia, evaluation of directionality in a diffusion measurement can be useful in white matter, which demonstrates strong diffusion anisotropy. Techniques such as diffusion-tensor imaging offer a glimpse into brain microstructure at a scale that is not easily accessible with