Effect of Gender on Thoracic and Lumbar Vertebral Curvatures and Flexibility in Normal Subjects

Thesis

Submitted to Basic Science Department in Partial Fulfillment of Requirements for Master Degree in Physical Therapy

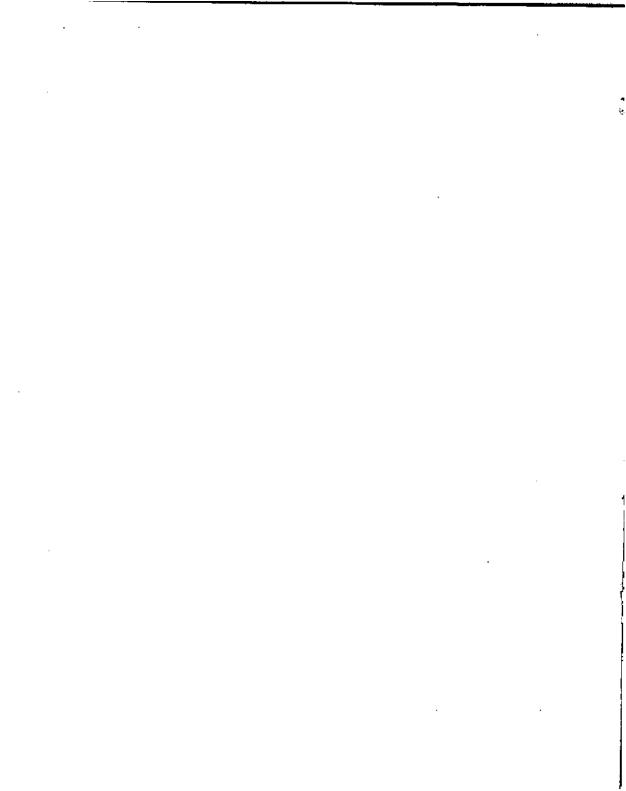
By

ABEER ABD EL-FTTAH ALI KHALEEL

B.Sc., in Physical Therapy (2002)

Supervisors

Ass. Prof. Dr. Ragia Mohamed Kamel

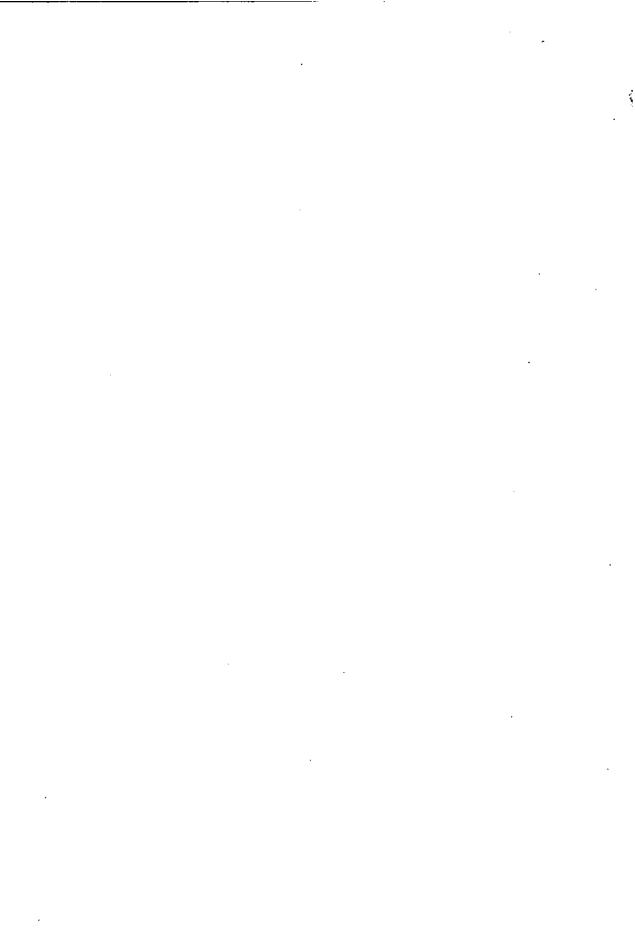

Rayin Mohermed hamed Assistant professor of Physical Therapy Basic Science Department Faculty of Physical Therapy Cairo University Dr. Neveen Abd El-Latif Abd El-Raoof

Lecturer of Physical Therapy Basic Science Department Faculty of Physical Therapy Cairo University

Faculty of Physical Therapy

Cairo University

2009


Abstract

Effect of Gender on Thoracic and Lumbar Vertebral Curvatures and Flexibility in Normal Subjects. Abeer Abd EL-Fttah Ali Khaleel; Supervisors, Ass. Prof. Ragia Mohamed Kamel*, Dr. Neveen Abd El Latif Abd El Raoof*

*Department of Basic Science, Faculty of Physical Therapy, Cairo University. Master Thesis; 2009.

Background: Sagittal spinal curves and flexibility present a wide range for normal individuals within normal limits. Purpose: investigate the effect of gender on thoracic and lumbar curvatures and flexibility in normal subjects. Subjects: 40 normal subjects from both genders participated in this study and assigned into two groups: Group (A) included 20 normal males with mean age of (21.45 ± 2.15) years, height (177.3 ± 7.56) cm, weight (75.95 ± 7.81) kg. and BMI (23.56±1.038) kg/m² and Group (B) included 20 normal females with mean age of (21.65±2.48) years, height (159.9±6.86) cm, weight (60.22 ± 8.084) kg, and BMI (23.45 ± 1.308) kg/m². Methods: Assessment of thoracic and lumbar curvatures using the Formetric system was used to measure the lordotic angle and kyphotic angle, while the new noninvasive electronic device Spinal mouse was used to measure the thoracic and lumbar spine range of motion. Results: There were significant differences in the thoracic and lumbar curvatures between both genders P= 0.0132, 0.0039 respectively, and there was a significant difference in the lumbar flexibility between both genders P= 0.361 while there was no significant difference in thoracic flexibility between both genders P= 0.5352. Conclusion: This study concluded that normal females had higher thoracic and lumbar curvatures than normal males, also normal females had higher lumbar spine ROM than normal males while there was no significant difference between normal females had males regarding thoracic spine ROM.

Key words: Thoracic curvature, lumbar curvature, thoracic flexibility, lumbar flexibility, lordotic angle and kyphotic angle.

Acknowledgement

First of all, I would like to kneel thanking our God who provided me with essential power and patience for completing this work.

I wish to express my deepest gratitude to Ass. Prof. Dr. Ragia Mohamed Kamel, assistant professor of physical therapy, Basic Science Department, Faculty of Physical Therapy, Cairo University for her kind supervision, and continuous generous guidance through the preparation and conduction of this work.

I am deeply grateful to my supervisor **Dr. Neveen Abd El-Latif**, lecturer of physical therapy, Basic Science Department, Faculty of Physical Therapy, Cairo University for the interesting discussion, support, encouragement, useful advices and guidance and essential help in this study.

Special thanks to my **professors** of basic science department for their encouragement and **colleagues** in the Faculty of Physical Therapy who helped me during the practical part of this work.

I owe my sincere thanks to my family for their love, continuous help, and their praying for my success.

• • , -

Contents

CHAPT	ER	page
I-Introd	luction	1
• 5	Statement of the problem	3
• F	Purpose of the study	3
• J	ustification of the study	4
• I	Delimitation	5
• I	Limitation	5
• F	Basic assumption	6
• I	-lypothesis	6
• I	Definition of Terms	6
II-Liter	ature Review	8
• I	Embryological origin of the vertebral column	8
• 4	Anatomy of the spine	15
• I	Biomechanics of spine	21
• 2	Abnormal spine	24
• 8	Spinal curvatures	28
• 1	Assessment of spinal curvatures	38
• 1	Assessment of spinal flexibility:	46
	erials and Methods	
• (Selection of the subjects	54
• }	Design of the study	55
•]	Instrumentation	55
• J	Procedures of the measurement	58

•	Data collection64
•	Statistical analysis
IV- A	nalysis Of Results66
•	General Characteristics of the subjects66
•	The mean values and standard deviation of the lordotic
	angle and kyphotic angle were recorded for each subject
	in both groups70
•	The unpaired t-test was used to identify the
	differences between both groups concerning the
	Iordotic angle and the kyphotic angle values72
•	The mean values and standard deviation of the thoracic
	spine ROM and lumber spine ROM were recorded
	for each subject in both groups73
•	The unpaired t-test was used to identify the differences
	between both groups concerning the thoracic spine
	ROM and lumbar spine ROM values75
V-Dise	cussion76
VI- Su	mmary and conclusion summary84
•	summary84
•	Findings85
•	Conclusions85
•	Implementations86
•	Recommendations 86

References8	8	
Appendices		
Arabic summary		

List of Tables

Figure	Title	Page
(2-1)	Pairs of Somites	9
(4-1)	Physical characteristics of subjects in both groups	67
(4-2)	The mean and standard deviation of the Lodotic Angle and Kyphotic Angle of group A (the men group)	70
(4-3)	The mean and standard deviation of the Lodotic Angleand Kyphotic Angle of group B (the women group)	70
(4-4)	The results of the independent t-test between both groups regarding the Lodotic Angle and the Kyphotic Angle	72
(4-5)	The mean and standard deviation of the Thoracic Spine range of motion and the Lumbar Spine range of motion of group A (the men group)	73
(4-6)	The mean and standard deviation of the Thoracic Spine range of motion and the Lumbar Spine range of motion of group B (the women group)	73
(4-7)	The results of the independent t-test between both groups regarding the Thoracic Spine range of motion and the Lumbar Spine range of motion	75
(5-1)	Testing of hypothesis	83

List of Figures

Figure	Title	Page
(2-1)	Embryological development of the neural cord and	9
	muscloskeletal system	
(2-2)	Sructure of vertebral column	15
(2-3)	Characteristics of a typical vertebra	16
(2-4)	Intervertebral disc	17
(2-5)	Spinal ligaments	18
(2-6)	Deep back muscles	20
(2-7)	Normal Spinal Segment	23
(2-8)	Scoliosis	25
(2-9)	Kyphosis	27
(2-10)	Spinal Curvatures	29
(2-11)	Development of spinal curvatures	30
(2-12)	Thoracic vertebrae shape	33
(2-13)	Thoracic kyphpsis	33
(2-14)	Lumbar Spine	35
(2-15)	Hyper lordosis	37
(2-16)	Flexible Ruler	39
(2-17)	Assessment by flexible Ruler	39
(2-18)	Cobb's Angle	40
(2-19)	Scoliometer	41
(2-20)	Assessment of thoracic kyphosis by DeBrunner	42
(2-21)	Assessment of lumar lordosis by the modified kyphometer	43
(2-22)	Modified Schober Test	47
(2-23)	Fingertip-to-floor Test	48
(2-24)	The Inclinometer	49
(3-1)	Formetric system in the Formetric Laboratory.	56
(3-2)	Spinal mouse	58
(3-3)	Subject and system positioning	59

Figure	Title	Page
(3-4)	Anatomical landmarks	61
(3-5)	Spinal mouse and subject positioning in Erect position	62
(3-6)	Spinal mouse and subject positioning in	63
	maximal flexion position	
(3-7)	Spinal mouse and subject positioning in	64
	maximal extension position	
(4-1)	The mean of age for group A and B	68
(4-2)	The mean of height for group A and B	68
(4-3)	The mean of weight for group A and B	69
(4-4)	The mean of Body Mass Index (BMI) for group A and B	69
(4-5)	The mean of Lodotic Angle in group A and B	71
(4-6)	The mean of Kyphotic Angle in group A and B	71
(4-7)	The mean of Thoracic Spine range of motion in group A and B	74
(4-8)	The mean of the Lumbar Spine range of motion in group A and B	74

List of Abbreviations

BMI: Body Mass Index

Fig: Figure

ROM: Range of Motion

2D: Two dimensions

3D: Three dimensions