

NEW DEVELOPMENT FOR SEPTIC TANK TO IMPROVE EFFLUENT QUALITY

A Thesis Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of Ph.D. Degree In Civil Engineering

Prepared by ENG. MOHAMMED HELMY AHMED ABBAS

M.Sc. in Civil Engineering, 2013 Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Supervisors

Prof. Dr. MOHAMED EL HOSSEINY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Prof.Dr. TAREK ISMAIL SABRY,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. KHALED HASSAN KHALIL

Associate professor of Sanitary & Environmental Engineering Higher Institute of Engineering, El Shorouk Academy, Cairo, EGYPT

Dr. OLFAT HAMDY IBRAHEM

Associate professor of Sanitary & Environmental Engineering Higher Institute of Engineering, El Shorouk Academy, Cairo, EGYPT

NEW DEVELOPMENT FOR SEPTIC TANK TO IMPROVE EFFLUENT QUALITY

A Thesis For The Ph.D. Degree in Civil Engineering (SANITARY ENGINEERING)

By ENG. MOHAMMED HELMY AHMED ABBAS

M.Sc. in Civil Engineering, 2013 Faculty of Engineering, Ain Shams University, Cairo, EGYPT

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Mohamed Fathy Hamoda	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Kuwait University	
Prof. Dr. Mahmoud Mohamed Abd El Azim	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mohamed El Hosseiny El Nadi	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Tarek Ismail Sabry	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	

Date: ----/2018

DEDICATION

I wish to dedicate this work to who suffered to educate, support and encourage me during the thesis work

TO MY PARENTS, MY SISTER

MY BROTHER

Also, I wish to dedicate my thesis to my professors

PROF. DR. MOHAMED EL HOSSEINY EL NADI PROF.DR.TAREK ISMAIL SABRY ASS.PROF. KHALED HASSAN ASS.PROF. OLFAT HAMDY

For the encouragement and support to complete this work.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of Ph.D. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from January 2014 to February 2018.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2018

Signature: - -----

Name: - MOHAMMED HELMY AHMED ABBAS

ACKNOWLEDGMENT

The candidate is deeply grateful to **Prof. Dr. Mohamed EL Hosseiny EL Nadi**, Professor of Sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University, for help, encourage, co-operation sponsoring and patient advising during preparation of this work.

Also, great thanks to **Prof.Dr. TAREK ISMAIL SABRY,** Professor of Sanitary and Environmental Engineering, Ain Shams University, for his help, and cooperation during the preparation of the study.

Also, great thanks to **Dr. KHALED HASSAN KALIL**, Associate Professor of Sanitary and Environmental Engineering, Higher Institute of Engineering, El Shorouk Academy, for his help, and co-operation during the preparation of the study.

Also, great thanks to **Dr.OLFAT HAMDY IBRAHEM**, Associate Professor of Sanitary and Environmental Engineering, Higher Institute of Engineering, El Shorouk Academy, for his help, and co-operation during the preparation of the study.

ABSTRACT OF Ph.D THESIS

NAME: - MOHAMMED HELMY AHMED ABBAS

Title: - " NEW DEVELOPMENT FOR SEPTIC TANK TO IMPROVE EFFLUENT QUALITY "

Faculty: - Faculty of Engineering, Ain Shams University.

Specialty: - Civil Eng., Public Works, Sanitary Eng.

Abstract:-

Despite the difference in sanitation coverage between urban and rural areas, there is a challenge to meet the maximum coverage for the sanitation all over the world. In small communities, a rural home has its own sewer system which is a septic tank. According to the high construction, operation and maintenance costs for conventional wastewater collection and treatment system there is a need to improve the on-site treatment units.

This study conducted to check the success of applying the using different types of fabric textile to improve septic tank effluent. The study divided to two stages, first stage made on bench scale model located in El Shorouk academy sanitation laboratory and the second stage made on pilot plant erected in Ezbt Sharf, Belbis, El Sharkia governorate. The study analyzed several wastewater samples from several locations from the pilot to obtain the efficiency of the unit. The measured data had been analyzed and discussed.

Using textile fabrics improve septic tank effluent quality in bench scale model, where cotton and non woven polypropylene geo – textile 800 gm achieve high removal efficiencies of TSS, BOD and COD. But this study mentioned that using non woven polypropylene geo – textile 800 gm is more effective and economically and obtain the equation that can be used to calculate the efficiency at anytime.

<u>Key words:</u> wastewater treatment, Septic tank, textile fabrics, filtration and capillarity.

SUPERVISORS

Prof. Dr. Mohamed EL Hosseiny EL Nadi,

Prof. Dr. Tarek Ismail Sabry, Ass.Prof. Khalid Hassan Khalil,

Ass.Prof.Olfat Hamdy Ibrahem.

TABLE OF CONTENT

COVER	Ι
APPROVAL COMMETII	II
DEDICATION	III
STATEMENT	IV
AKNOWLEDGEMENT	V
ABSTRACT	VI
TABLE OF CONTENT	VII
LIST OF TABLES	XIII
LIST OF FIGURE	XVII
CHAPTER I : INTRODUCTION	
1-1 GENERAL	1
1-2 AIM OF STUDY	1
1-3 SCOPE OF WORK	1
1-3-1 PRATICAL APPLICATION STUDY	2
1-3-2 ANALYTICAL STUDY	2
1-3-2-1 DATA COLLECTION	2
1-3-2-2 RESULTS ANALYSIS AND DISCUSSION	3
1-3-2-3 THESIS PREPARATION	3
1-4 THESIS ORGANIZATION	3
1-4-1 CHAPTER 1: INTRODUCTION	3
1-4-2 CHAPTER 2: LITERATURE REVIEW	3
1-4-3 CHAPTER 3: MATERIALS AND METHODS	
1-4-4 CHAPTER 4: RESULTS	
1-4-5 CHAPTER 5: DISCUSSIONS	4
1-4-6 CHAPTER 6: CONCLUSIONS	4
CHAPTER II : LITERATURE REVIEW	_
2-1 INTRODUCTION.	
2-2 WASTEWATER TREATMENT	
2-2-1 WASTEWATER TREATMENT APPROACHES	6

2-2-1-1 CENTRALIZED WASTEWATER SYSTEMS	
2-2-1-2 DECENTRALIZED WASTEWATER SYSTEMS	
2-3 WASTEWATER TREATMENT IN SMALL COMMUNTIES	
2-4 SEPTIC SYSTEM HISTORY	
2-5 DESCRIPTION OF SEPTIC TANK	
2-5-2 ACTIONS INSIDE SEPTIC TANK	
2-5-2-1 PHYSICAL PROCESSES	
2-5-2-2 BIOLOGICAL AND CHEMICAL PROCES	
2-6 MODIFICATION OF SEPTIC TANK	
2-7 APPLICATION OF MODIFIED SEPTIC TANK	
2-7-1 SEPTIC TANK WITH UPFLOW FILTERS	
2-7-2 SEPTIC TANK WITH DUAL UP FLOW FILTERS	
2-7-3 BAFFLED REACTOR	
2-7-4 UP FLOW SEPTIC TANK BAFFLED REACTOR (USBR)	
2-7-5 ZERO ENERGY COMPACT UNIT (ZECU)	
2-8 TYPES OF SEWERAGE SYSTEMS FOR SEPTIC TANK	
2-9 FILTRATION	
2-9-1 DEFINITION	
2-9-2 PURPOSE	
2-9-3 MECHANISM OF FILTRATION	
2-10 TEXTILE FILTERATION	
2-10-1 APPLICATION OF TEXITLE FILTER IN WATER TREATME	NT
2-10-1-1 PERFORMANCE EVALUATION OF STORM WATER	
FILTRATION SYSTEM	
2-10-2 APPLICATION OF TEXTILE FILTER IN WASTEWATER	
TREATMENT	
2-10-2-1 INNOVATIVE TEXTILE BIOFILTERS WASTEWATER	
TREATMENT	
2-10-2-2 TEXTILE FILTER FOR THE TREATMENT OF DOMESTIC	
WASTEWATER	
2-10-2-3 BACTERIA IN NON-WOVEN TEXTILE FILTERS FOR	
DOMESTIC WASTEWATER TREATMENT	· • • • • • • • • • • • • • • • • • • •
2-10-2-4 PERFORMANCE OF PEAT FILTERS IN THE TREATMENT	T OF

DOMESTIC WASTEWATER
2-11 FABRIC MEDIAS USED WITH SEPTIC TANK
2-11-1 TYPES OF MEDIA
2-11-1-1 SEPTIC MEDIA FILTERS USING OPEN CELLED FOAM
CUBES
2-11-1-2 USE OF SEPTIC MEDIA FILTERS USING PEAT
2-11-1-3 SEPTIC MEDIA FILTERS USING TEXTILES.
2-11-1-4 CRUSHED GLASS SEPTIC SYSTEM FILTERS MEDIA
2-12 ADVANTAGES OF TEXTILE FILTER MEDIA.
2-13 DISADVANTAGES OF TEXTILE FILTER MEDIA.
2-14 CAPILLARITY.
2-14-1 DEFINITION.
2-14-2 PHENOMENA AND PHYSICS.
2-14-3 APPLICATION OF CAPILLARITY IN WATER TREATMENT
2-14-3-1 WATER TREATMENT BY FABRIC CAPILLARY ACTION
CHAPTER III: MATERIALS & METHODS
3-1 GENERAL
3-1 GENERAL
3-2 STUDY OF SITE.
3-2 STUDY OF SITE.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE).
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS. 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE). 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS. 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS. 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE. 3-5-1 EXPERIMENTAL PROGRAMS.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS. 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE. 3-5-1 EXPERIMENTAL PROGRAMS. 3-5-1-1 LAB SCALE EXPERIMENTAL PROGRAM.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS. 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE. 3-5-1 EXPERIMENTAL PROGRAMS. 3-5-1-2 PILOT SCALE EXPERIMENTAL PROGRAM.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS. 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE. 3-5-1 EXPERIMENTAL PROGRAMS. 3-5-1-1 LAB SCALE EXPERIMENTAL PROGRAM. 3-5-1-2 PILOT SCALE EXPERIMENTAL PROGRAM. 3-5-2 SAMPLING LOCATIONS.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS. 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE. 3-5-1 EXPERIMENTAL PROGRAMS. 3-5-1-1 LAB SCALE EXPERIMENTAL PROGRAM. 3-5-1-2 PILOT SCALE EXPERIMENTAL PROGRAM. 3-5-2 SAMPLING LOCATIONS. 3-5-2-1 RAW WASTEWATER.
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE. 3-5-1 EXPERIMENTAL PROGRAMS. 3-5-1-1 LAB SCALE EXPERIMENTAL PROGRAM. 3-5-1-2 PILOT SCALE EXPERIMENTAL PROGRAM. 3-5-2 SAMPLING LOCATIONS. 4-3-5-2-1 RAW WASTEWATER. 4-3-5-2-2 PILOT UNIT EFFLUENT.
3-2 STUDY OF SITE 3-3 WORK PLAN 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE) 3-4 DESIGN OF PILOT UNIT 3-4-1 CALCULATION OF UNIT DIMENSIONS 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS 3-5 THE OPERATION PROCEDURE 3-5-1 EXPERIMENTAL PROGRAMS 3-5-1-1 LAB SCALE EXPERIMENTAL PROGRAM 3-5-1-2 PILOT SCALE EXPERIMENTAL PROGRAM 3-5-2 SAMPLING LOCATIONS 3-5-2-1 RAW WASTEWATER 3-5-2-2 PILOT UNIT EFFLUENT
3-2 STUDY OF SITE. 3-3 WORK PLAN. 3-3-1 DESCRIPTION OF STAGE I (LAB SCALE) 3-3-2 DESCRIPTION OF STAGE II (PILOT SCALE). 3-4 DESIGN OF PILOT UNIT. 3-4-1 CALCULATION OF UNIT DIMENSIONS 3-4-2 DESIGN DRAWINGS OF UNIT DIMENSIONS. 3-5 THE OPERATION PROCEDURE. 3-5-1 EXPERIMENTAL PROGRAMS. 3-5-1-1 LAB SCALE EXPERIMENTAL PROGRAM. 3-5-1-2 PILOT SCALE EXPERIMENTAL PROGRAM. 3-5-2 SAMPLING LOCATIONS. 4-3-5-2-1 RAW WASTEWATER. 4-3-5-2-2 PILOT UNIT EFFLUENT.

3-5-3-3 CHEMICAL OXYGEN DEMAND COD.	
3-5-3-4 BIOCHEMICAL OXYGEN DEMAND.	
CHAPTER IV: RESULTS	
4-1 INTRODUCTION	
4-2 STAGE I (LAB SCALE)	
4-2-1 OPERATING CYCLES.	
4-2-2 RESULTS OF CAPILLARITY ACTION.	
4-2-2-1 NON WOVEN POLYESTER.	
4-2-2-2 COTTON	
4-2-2-3 FILTER LEBBAD.	
4-2-2-4 NON WOVEN POLYPROPYLENE GEO-TEXTILE (800 GM)	
4-2-2-5 NON WOVEN POLYPROPYLENE GEO-TEXTILE (300 GM)	
4-2-3 RUSTLES OF FILTRATION ACTION	
4-2-3-1 NON WOVEN POLYESTER	
4-2-3-2 COTTON	
4-2-3-3 FILTER LEBBAD.	
4-2-3-4 NON WOVEN POLYPROPYLENE GEO-TEXTILE (800 GM)	
4-2-3-5 NON WOVEN POLYPROPYLENE GEO-TEXTILE (300 GM)	
4-3 STAGE II (PILOT SCALE)	
4-3-1 PILOT SCALE OPERATING CYCLES.	
4-3-2 COTTON RUNS	
4-3-2-1 RUN (1-1)	
4-3-2-2 RUN (1-2)	
4-3-2-3 RUN (1-3)	
4-3-2-4 RUN (1-4)	
4-3-3 NON WOVEN GEO-TEXTILE (800 GM) RUNS	
4-3-3-1 RUN (2-1)	
4-3-3-2 RUN (2-2)	
4-3-3-3 RUN (2-3)	
4-3-3-4 RUN (2-4)	
4-3-4 OPERATION FLOW RATE	
4-3-5 THE MOOD OF EA AII LIRE	

CHAPTER V : DISSCUSION	
5-1 INTRODUCTION.	. 9
5-2 DISCUSSION OF STAGE I (LAB SCALE)	. 9
5-2-1 REMOVAL EFFICIENCY OF CAPILLARITY ACTION	9
5-2-1-1 NON WOVEN POLYESTER REMOVAL EFFICIENCY	9
5-2-1-2 COTTON REMOVAL EFFICIENCY	9
5-2-1-3 FILTER LEBBAD REMOVAL EFFICIENCY	9
5-2-1-4 NON WOVEN POLYPROPYLENE GEO-TEXTILE (800 GM)	
REMOVAL EFFICIENCY.	. 9
5-2-1-5 NON WOVEN POLYPROPYLENE GEO-TEXTILE (300 GM)	
REMOVAL EFFICIENCY	. 9
5-2-2 COMPARISON BETWEEN USED FABRICS	. 9
5-2-3 REMOVAL EFFICIENCY OF FILTRATION ACTION	9
5-2-3-1 NON WOVEN POLYESTER REMOVAL EFFICIENCY	. 9
5-2-3-2 COTTON REMOVAL EFFICIENCY	. 1
5-2-3-3 FILTER LEBBAD REMOVAL EFFICIENCY	1
5-2-3-4 NON WOVEN POLYPROPYLENE GEO-TEXTILE (800 GM)	
REMOVAL EFFICIENCY	. 1
5-2-3-5 NON WOVEN POLYPROPYLENE GEO-TEXTILE (300 GM)	
REMOVAL EFFICIENCY	. 1
5-2-4 COMPARISON BETWEEN USED FABRICS	. 1
5-3 DISCUSSION OF STAGE II (PILOT SCALE)	. 1
5-3-1 RESULTS OF COTTON RUNS	1
5-3-1-1 REMOVAL EFFICIENCIES OF RUN (1-1)	. 1
5-3-1-2 REMOVAL EFFICIENCIES OF RUN (1-2)	. 1
5-3-1-3 REMOVAL EFFICIENCIES OF RUN (1-3)	. 1
5-3-1-4 REMOVAL EFFICIENCIES OF RUN (1-4)	. 1
5-3-2 RESULTS OF GEO-TEXTILE RUNS.	. 1
5-3-2-1 REMOVAL EFFICIENCIES OF RUN (2-1)	. 1
5-3-2-2 REMOVAL EFFICIENCIES OF RUN (2-2)	. 1
5-3-2-3 REMOVAL EFFICIENCIES OF RUN (2-3)	. 1
5-3-2-4 REMOVAL EFFICIENCIES OF RUN (2-4)	. 1
5 A ODTIMUM ELOW DATE	1

5-5 SYSTEM FAILURE
CHAPTER VI : MATHEMATICAL MODELLING
6-1 INTRODUCTION
6-2 CAPILLARITY MODELLING
6-3 FILTRATIONMODELLIN.
CHAPTER VII : CONCLUSION
7-1 STUDY CONCLUSION.
7-2 RECOMMENDATIONS
7-3 FURTHER AND FUTURE WORK
REFERENCES

LIST OF TABLES

CHAPTER III : MATERIALS & METHODS
TABLE (3/1) USED FABRICS COMPARISON
TABLE (3/2) LAB SCALE RUNS
TABLE (3/3) PILOT SCALE RUNS (CAPILLARITY ACTION)
TABLE (3/4) PILOT SCALE RUNS (FILTRATION ACTION)
TABLE (3/4) TILOT SCALE RONS (FILTRATION ACTION)
CHAPTER IV: RESULTS
TABLE (4/1) LAB SCALE OPERATING CYCLES
TABLE (4/2) INFLUENT WASTEWATER CHARACTERISTICS OF
CAPILLARITY ACTION
TABLE (4/3) NON WOVEN POLYESTER EFFLUENT CHARACTERISTICS
OF CAPILLARITY ACTION
TABLE (4/4) COTTON EFFLUENT CHARACTERISTICS OF CAPILLARITY
ACTION
TABLE (4/5) FILTER LEBBAD EFFLUENT CHARACTERISTICS OF
CAPILLARITY ACTION
TABLE (4/6) NON WOVEN POLYPROPYLENE GEO-TEXTILE (800 GM)
EFFLUENT CHARACTERISTICS OF CAPILLARITY ACTION
TABLE (4/7) NON WOVEN POLYPROPYLENE GEO-TEXTILE (300 GM)
EFFLUENT CHARACTERISTICS OF CAPILLARITY ACTION
TABLE (4/8) INFLUENT WASTEWATER CHARACTERISTICS OF
FILTRATION ACTION
TABLE (4/9) NON WOVEN POLYESTER EFFLUENT CHARACTERISTICS
OF FILTRATION ACTION
TABLE (4/10) COTTON EFFLUENT CHARACTERISTICS OF FILTRATION
ACTION TABLE (4/11) FILTER LEBBAD EFFLUENT CHARACTERISTICS OF
FILTRATION ACTION
TABLE (4/12) WOVEN POLYPROPYLENE GEO-TEXTILE (800 GM)
EFFLUENT CHARACTERISTICS OF FILTRATION ACTION
TABLE (4/13) WOVEN POLYPROPYLENE GEO-TEXTILE (300 GM)
EFFLUENT CHARACTERISTICS OF FILTRATION ACTION
TABLE (4/14) PILOT SCALE RUNS (COTTON)
TABLE (4/15) PILOT SCALE RUNS (GEO - TEXTILE)
TABLE (4/16) INFLUENT CHARACTERISTICS OF RUN (1-1)
TABLE (4/17) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS OF RUN (1-1)
INUIN (1-17

TABLE (4/18) FILTRATION ACTION EFFLUENT CHARACTERISTICS OF	
RUN (1-1)	
TABLE (4/19) CONVENTIONAL SEPTIC TANK EFFLUENT	
CHARACTERISTICS OF RUN (1-1)	
TABLE (4/20) INFLUENT CHARACTERISTICS OF RUN (1-2)	•••
TABLE (4/21) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS OF	
RUN (1-2)	
TABLE (4/22) FILTRATION ACTION EFFLUENT CHARACTERISTICS OF	
RUN (1-2)	•••
TABLE (4/23) CONVENTIONAL SEPTIC TANK EFFLUENT	
CHARACTERISTICS OF RUN (1-2)	•••
TABLE (4/24) INFLUENT CHARACTERISTICS OF RUN (1-3)	•••
TABLE (4/25) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS OF	
RUN (1-3)	•••
TABLE (4/26) FILTRATION ACTION EFFLUENT OF CHARACTERISTICS	
RUN (1-3)	•••
TABLE (4/27) CONVENTIONAL SEPTIC TANK EFFLUENT	
CHARACTERISTICS OF RUN (1-3)	
	•••
TABLE (4/29) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS OF	
RUN (1-4)	•••
RUN (1-4)	
TABLE (4/31) CONVENTIONAL SEPTIC TANK EFFLUENT	•••
CHARACTERISTICS OF RUN (1-4)	
TABLE (4/32) INFLUENT CHARACTERISTICS OF RUN (2-1)	
TABLE (4/33) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS OF	•••
RUN (2-1)	
TABLE (4/34) FILTRATION ACTION EFFLUENT CHARACTERISTICS OF	•••
RUN (2-1)	
TABLE (4/35) CONVENTIONAL SEPTIC TANK EFFLUENT	
CHARACTERISTICS OF RUN (2-1)	
TABLE (4/36) INFLUENT CHARACTERISTICS OF RUN (2-2)	
TABLE (4/37) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS OF	
RUN (2-2)	
TABLE (4/38) FILTRATION ACTION EFFLUENT CHARACTERISTICS OF	
RUN (2-2)	
TABLE (4/39) CONVENTIONAL SEPTIC TANK EFFLUENT	
CHARACTERISTICS OF RUN (2-2)	
TABLE (4/40) INFLUENT CHARACTERISTICS OF RUN (2-3)	

TABLE (4/41) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS	
RUN (2-3)	
TABLE (4/42) FILTRATION ACTION EFFLUENT CHARACTERISTICS (
RUN (2-3) TABLE (4/43) CONVENTIONAL SEPTIC TANK EFFLUENT	•••••
CHARACTERISTICS OF RUN (2-3)	
TABLE (4/44) INFLUENT CHARACTERISTICS OF RUN (2-4)	
TABLE (4/45) CAPILLARITY ACTION EFFLUENT CHARACTERISTICS	
RUN (2-4)	
TABLE (4/46) FILTRATION ACTION EFFLUENT CHARACTERISTICS	OF
RUN (2-4)	
TABLE (4/47) CONVENTIONAL SEPTIC TANK EFFLUENT	
CHARACTERISTICS OF RUN (2-4)	
TABLE (4/48) DIFFERENT FLOW RATE FOR COTTON RUN	
TABLE (4/48) DIFFERENT FLOW RATE FOR NON WOVEN GEO-TEXT	
RUN	
G-1 - D-1 - D-20 G-1-0-1	
CHAPTER V : DISSCUSION	
TABLE (5/1) REMOVAL EFFICIENCY OF NON WOVEN POLYESTER	
TABLE (5/2) REMOVAL EFFICIENCY OF COTTON	
TABLE (5/3) REMOVAL EFFICIENCY OF FILTER LEBBAD	
TABLE (5/4) REMOVAL EFFICIENCY OF NON WOVEN POLYPROPYL	
GEO-TEXTILE (800 GM)	
TABLE (5/5) REMOVAL EFFICIENCY OF NON WOVEN POLYPROPYL	
GEO-TEXTILE (300 GM)	
TABLE (5/6) REMOVAL EFFICIENCY OF NON WOVEN POLYESTER	
TABLE (5/7) REMOVAL EFFICIENCY OF COTTON	
TABLE (5/8) REMOVAL EFFICIENCY OF FILTER LEBBAD	
TABLE (5/9) REMOVAL EFFICIENCY OF NON WOVEN POLYPROPYL	
GEO-TEXTILE (800 GM)TABLE (5/10) REMOVAL EFFICIENCY OF NON WOVEN POLYPROPY	T ENIE
GEO-TEXTILE (300 GM)	
TABLE (5/11) CAPILLARITY ACTION REMOVAL EFFICIENCY	
TABLE (5/12) FILTRATION ACTION REMOVAL EFFICIENCY	
TABLE (5/13) CONVENTIONAL SEPTIC TANK REMOVAL EFFICIENCE	
TABLE (5/14) CAPILLARITY ACTION REMOVAL EFFICIENCY	
TABLE (5/15) FILTRATION ACTION REMOVAL EFFICIENCY	
TABLE (5/15) FILTRATION ACTION REMOVAL EFFICIENCY TABLE (5/16) CONVENTIONAL SEPTIC TANK REMOVAL EFFICIENCY	
TABLE (5/17) CAPILLARITY ACTION REMOVAL EFFICIENCY	