Functional Disorders of Neutrophils

An Essay

Submitted in Partial Fulfillment of Master Degree In Internal Medicine

By

Assmaa Mohamad Mohammad Ahmad

M. B; B. Ch.

Under supervision of

Dr. Medhat El-Fatatry

Assistant Professor of Internal Medicine

Faculty of Medicine Cairo University

Dr. Mohamed Rehan

Lecturer of Internal Medicine

Faculty of Medicine Beni-Sueif University

Cairo University

2009

بسم الله الرحمن الرحيم

Acnowledgement

First and foremost, thank you GOD

I would like to thank and show all signs of extreme appreciation to my teacher **Dr. Medhat El-Fatatry**, Assistant Professor of Internal Medicine, Faculty of Medicine, Cairo University, who offered me his precious time, knowledge, guidance, and a lot of patience.

My deepest gratitude, sincere thanks and appreciation to **Dr. Mohamed Rehan**, Lecturer of Internal Medicine, Faculty of Medicine,
Beni-Sueif University, who offered me encouragement, kind support, and knowledge.

Assmaa Mohammad Ossman

ABSTRACT

white blood Although neutrophils are the most abundant type of , quantitative immune system and form an essential part of the cells abnormalities tack most of researchers work, so it was a deemed of interest to review qualitative abnormalities. This review of disorders of neutrophil number and function will discuss and classification, clinical presentation, important research advances in the field and then provide a clinical diagnostic approach for these category of diseases, and new advances in therapy, prognosis and response.

Key words: neutrophils - Functional disorders of neutrophils

List of Content

I-Introduction	1
II- Chapter I: Normal Neutrophils	
Morphology of Neutrophils	2
Myeloblast	2
Promyelocyte	3
Myelocyte	4
Metamyelocyte	5
Band	6
Mature Neutrophil	7
Subcellular Structure of Neutrophils	9
Neutrophil Granules	9
Plasma Membrane	13
Cytoplasm	16
Development of Neutrophils	18
Kinetics of Neutrophils	21
Functions of Neutrophils	24
Margination and Capture	24
Adherence to the Endothelial Wall	25
Neutrophil Aggregation	26
Transendothelial Migration	27
Chemotaxis	28
Phagocytosis	30
Bacterial Killing	31
Digestion	36
III- Chapter II: Functional Disorders of Neutrophils	
Introduction and Common Features	37
Congenital Disorders of Neutrophil Functions	43

Degranulation Abnormalities	45
Chédiak-Higashi Syndrome	45
Specific Granule Deficiency	56
Adhesion Abnormalities	59
Leukocyte Adhesion Deficiency I (LAD I)	59
Leukocyte Adhesion Deficiency II (LAD II)	68
Leukocyte Adhesion Deficiency III (LAD III)	70
Neutrophil Actin Dysfunction	71
Disorders of Neutrophil Motility and Chemotaxis	73
Familial Mediterranean fever	73
Hyperimmunoglogulin E Syndrome (Job Syndrome)	89
Miscellaneous Chemotactic Disorders	100
Defects in Microbicidal Activity	103
Chronic Granulomatous Disease	104
Myeloperoxidase Deficiency	122
Glucose-6-Phosphate Dehydrogenase Deficiency	128
Glutathione Synthetase or Reductase Deficiency	129
Catalase Deficiency	131
Other Congenital Diseases Causing Secondary Defect	in Neutrophil
Functions	132
Sickle cell anemia	132
Thalassemia major	134
Common Problems causing Acquired Disorders of	. Neutrophils
Functions	133
Diabetes Mellitus	134
End Stage Renal Disease and Haemodialysis	139
Viral Infection	141
Myeloprolifrative disorders	144
Myelodysplastic syndromes	145

Sever infections	146
IV- References	147
V- Arabic summary	167

List of Figures

Figure 1	Myeloblast	٣
Figure 2	Promyelocyte	٤
Figure 3	Myelocyte	٥
Figure 4	Metamyelocyte	٦
Figure 5	Band and segmented neutrophils	٨
Figure 6	Diagrammatic representation of neutrophil stages of maturation	١٨
Figure 7	Life cycle of neutrophil	7 £
Figure 8	Scanning electron micrograph of a moving neutrophil	44
Figure 9	Evaluation of patients with recurrent bacterial and/or fungal infections	٣٨
Figure 10	Practical parameters for diagnosis and management of primary immunodeficiency	٤١
Figure 11	The characteristic silver-gray hair of a child with Chediak- Higashi syndrome	٤٨
Figure 12	Giant granules of neutrophils in a patient with Chédiack- Higashi syndrome	٥.
Figure 13	A hair from a patient with the Chédiak-Higashi syndrome	٥١
Figure 14	A peripheral-blood smear from a patient with neutrophil-specific granule deficiency	٥٨
Figure 15	Features of neutrophils of leukocyte adhesion deficiency type 1	11
Figure 16	Diagnostic algorithm for familial Meditranean fever	٨٢
Figure 17	Facial appearance of a patient with hyper-IgE syndrome	9 7
Figure 18	Neutrophils in the lazy leukocyte syndrome	1.7
Figure 19	Reactions of the respiratory burst pathway	١٠٤
Figure 20	Different genetic subgroups of chronic granulomatous	١٠٦
77	disease	
Figure 21	Clinical features of chronic granulomatous Disease	111
Figure 22	Results of the nitroblue tetrazolium test in normal neutrophils and in chronic granulomatous diseas	111

List of Tables

Table 1	Membrane and matrix components of neutrophilic granules	١.
Table 2	CD antigens expressed on neutrophils	10_17
Table 3	Clinical features of disorders of neutrophil function	٣٩_٤ ٠
Table 4	Classification according to inheritance and type of defect	£ 4 = £ £
Table 5	Familial Meditrranean fever severity score	٧٨
Table 6	Criteria for diagnosis of familial Meditrranean fever	A1_AY
Table 7	Clinical features of the hereditary periodic fever syndrome	٨٤
Table 8	Summary of clinical differences between classic HIES* and AR*-HIES	9 £
Table 9	Infections in chronic granulomatous disease	-1 . 9

*HIES: Hyperimmunoglbulin E syndrome, *AR: Autosomal dominant

List of Abbreviations

AGEs	Advanced glycation (glycosylation or glycoxidation) end
	products
AML	Acute myeloid leukemia
ATP	Adenosine triphosphate
BPI	Bacterial permeability-increasing protein
C/EBP	CCAAT\enhancer-binding protein epsilon
C3e	The third component of complement
C5a	The fifth component of complement
СВ	Cytochalasin B
CFU-GM	Granulocyte Monocyte-Colony Forming Unit
CGD	Chronic Granulomatous Diseas
cGMP	Cyclic guanosin monophosphate
CHD	Coronary heart disease
CHS	Chédiak-Higashi syndrome
CML	Chronic myeloid leukemia
CT cell	Cytotoxic T-cells
DF ³² P	Di-isopropyl flurophosphatase
DHR	Dihydrorhodamine 123
E-64-d	A thiol proteinase inhibitor
EPO	Eosinophilic peroxidase
FMF	Familial Mediterranean fever
FMLP	Formyl methionyl-leucyl phenylalanine
G6PD	Glucose-6-phosphate dehydrogenase
G-CSF	Granulocyte colony-stimulating factor
GDP	Glucose diphosphate
GEF	Guanine exchange factor
GFR	Glomerular filtration rate
GM-CSF	Granulocyte-macrophage colony-stimulating factor
GPCRs	G protein-coupled receptors
GS	Griscelli syndrome
GVHD	Grafts versus host disease
H_2O_2	Hydrogen peroxide
HD	Haemodialysis
HIES	Hyperimmunoglobulin E syndrome
HIV	Human immunodeficiency virus
HLH	Hemophagocytic lymphohistiocytosis
HOC1	Hypochlorous acid
HSCT	
L	Histocompatable stem cell transplantation

IBD	Inflammatory bowel disease
ICAMS	Intercellular Adhesion Molecules
IFN-α	Interferon-α
IFN-γ	Interferon γ
IL-3	Interleukin-3
ITAMs	Immunoreceptor tyrosine-based activation motifs
IVIG	Intravenous Ig infusion therapy.
LAD	Leukocyte adhesion deficiency
LFA-1	Leukocyte factor antigen-1
LJP	Localized juvenile periodontitis
LLS	lazy leucocyte syndrome
LPS	Lipopolysaccharides
Mac-1	Macrophage antigen-1
LSP-1	Lymphocyte-specific protein-1
LTB4	Leukotriene B ₄
LYST gene	Lysosomal trafficking regulator gene
MDS	Myelodysplastic syndrome
MPO	Myeloperoxidase
MRSA	Methicillin-resistant S aureus
MYH9	Non-muscle myosin heavy chain IIA gene
NADPH	Nicotinamide adenine dinucleotide phosphate
NBT	Nitroblue tetrazolium test.
NK	Natural killer cell
NOS	Nitric oxide synthetase
OCA	Oculocutaneous albinism
PAF	Platelet-activating factor
6PGD	6 phosphogluconate dehydrogenase
PMN	Polymorphnuclear leukocyte
PS	Phosphatidylserine
RER	Rough endoplasmic reticulum
ROS	Reactive oxygen species
SAA	Serum amyloid A
SCD	Sickle cell disease
SGD	Specific granule deficiency
SMCE	Store-mediated calcium entry
SOD	Superoxide dismutase
TH2	T helper cells
TLR	Toll-like receptor
TNF- α	Tumor necrosis factor- α
Tyk2	Tyrosine kinase 2
VCAM-1	Vascular cell adhesion molecule-1
XLP	X-linked lymphoproliferative syndrome

Introduction

Neutrophils are the predominant white blood cells involved in phagocytic killing of micro-organisms like bacteria and fungi. They are also referred to as polymorphonuclear or segmented, owing to their characteristic lobulated nucleus. They are at the end stage of maturation (**Ravandi et al., 2005**).

Neutrophils play a critical role in host defense by phagocytizing and digesting microorganisms, and inappropriate activation of neutrophils may result in damage to normal host tissues. In the resting uninfected host, the production and elimination of neutrophils are balanced, resulting in a fairly constant concentration of neutrophils in peripheral blood (Baehner, 2005).

This chapter reviews the morphology, structure, development, kinetics, and function of normal neutrophils.

١

Morphology

Ehrlich (1880) introduced techniques for staining blood cells that provided a means to identify and classify white corpuscles. He divided blood cells into lymphocytes, large mononuclear cells with indented nuclei (later called monocytes), and polymorphous nucleated cells with granules staining neutrophilic, acidophilic, or basophilic (Baehner, 2005).

In the normal adult human, the life of neutrophils is spent in three environments: marrow, blood, and tissues. Marrow is the site of differentiation of hematopoietic stem cells into neutrophil progenitors and of proliferation and terminal maturation of neutrophilic granulocytes (myeloblast to segmented neutrophils) (**Dorothy et al., 2007**).

Myeloblast

The word myeloblast describes an immature cell, typically found in the bone marrow and not in the blood (Skubtiz, 2004). The myeloblast is the youngest myeloid precursor recognizable in the bone marrow smear employing Wright-Giemsa polychrome stain. Because they are in the process of growth and division, myeloblasts vary considerably in size from $10 \text{ to } 20 \text{ }\mu\text{m}$ in diameter. The nucleus is large and round, with finely granular chromatin and one or two pale blue nucleoli, granules are absent, and the cytoplasm is scanty (Figure 1) (Baehner, 2005).

In wet films, myeloblasts appear immobile with thin, tenacious borders. The cytoplasm is hazy and usually contains no stainable substance other than mitochondria. Leukemic myeloblasts that contain no perceptible granules often are identified by special stains that demonstrate the presence of Myel-

operoxidase (MPO) or esterase, thus providing early evidence of differentiation. Particularly in patients with acute leukemia, the nucleus may show several wide and deep indentations, suggesting lobulation. Such myeloblasts suggest more rapid maturation on the part of the nucleus than of the cytoplasm (asynchronism of Di Guglielmo). Also in association with leukemia, Auer bodies are evident in the cytoplasm of cells (Skubtiz, 2004).

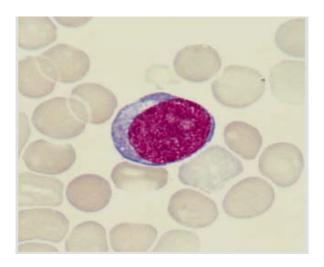


Figure 1: Myeloblast (Lichman et al., 2007).

Promyelocytes

The promyelocyte is larger than the myeloblast and the myelocyte, being greater than 20 µm in diameter. The nucleus, nuclear chromatin, and nucleoli resemble those of the myeloblast, but the differentiating feature is the presence of many violet granules (Figure 2a). These so-called azurophilic or primary granules are homogeneous, dense, and round to ovoid and are bounded by a unit membrane (Figure 2b) (**Baehner**, 2005).