Early on-treatment response as a predictor of sustained virological response in genotype 4 HCV naïve Egyptian patients treated with peginterferon plus ribavirin

Thesis Submitted in fulfillment of Master Degree in Pharmaceutical Sciences (Clinical Pharmacy)

By the pharmacist

Haitham Galal El Din Zakaria

Demonstrator at Clinical Pharmacy Department Faculty of Pharmacy - October 6 University

Under the supervision of

Prof. Samira Saleh Mostafa

Prof. of Pharmacology and Toxicology
Faculty of Pharmacy - Cairo University

Dr. Manal Hamed El Hamamsy

Assistant Professor of Clinical Pharmacy
Faculty of Pharmacy - Ain Shams University

Dr. Hassan El said El Batae

Assistant Professor of Tropical Medicine and Infectious Disease

Faculty of Medicine - Tanta University

Department of Clinical Pharmacy
Faculty of Pharmacy
Ain Shams University
2012

Acknowledgement

Thanks firstly and lastly to Allah the most merciful as we owe him for his great care, support and guidance in every step in our life.

I would like to express my thanks and sincere gratitude to the great Prof. Dr. Samira Saleh Prof. of Pharmacology and Toxicology, Cairo University for her kind supervision, continuous guidance, indispensable advices and support all through the work. From her, I learnt the way of scientific research. It was a great honor for me to work under her supervision.

My deep thanks and appreciation to Dr. Manal EL Hamamsy Assistant Prof. of Clinical Pharmacy, Ain Shams University for her strict supervision and revision of this work, she patiently gave me much of her time, experience, knowledge and support, her valuable comments, effort and collaboration were the causes to complete this work properly, so no words can express my gratitude to her.

I am greatly honored to express my deep gratitude and faithfulness to Dr. Hasan El Batae Assistant Prof. of Tropical Medicine and Infectious Disease, Tanta University, who generously supervised my work in a supportive and educational way.

Words stand short to express my deep appreciation, gratitude and faithfulness to Dr. Mohamed Sharaf El Din Prof. of Tropical Medicine and Infectious Disease, Tanta University and Universal supervisor in Kaffr El-Shiekh Liver and Cardiac Center & Dr. Ahmed EL Maadawy Consultant in Kaffr El-Shiekh Liver and Cardiac Center, They patiently gave me much of their time, their kind supervision, continuous guidance, indispensable advices. Their fatherhood attitude and encouragement were so supportive for the completion of this work.

Also, my deep appreciation for the staff members of the Kaffr EI-Shiekh Liver and Cardiac Center and my colleagues by whom all, I was very much impressed by the noble characters, generous attitude and kind sympathy.

My deep thanks are due to all my colleagues, all patients included in this work and everyone who made any effort for this work to become a reality.

I owe a special dedication to my family and friends for their never ending care. Before all, my gratitude to my parents; who was always supporting me and encouraging me to continue and finish this work.

Abstract

Background and Study Aims: Effect of peginterferon and ribavirin treatment on chronic hepatitis C virus infection has early been established. However, predictors of treatment success need more elucidation. The present study is directed to estimate the importance of rapid virological response, and other host and viral factors as predictors of sustained virological response in genotype 4 hepatitis C virus naïve Egyptian patients treated with 48 weeks of pegylated interferon and ribavirin.

Patients and Methods: A total of 111 naïve patients with chronic hepatitis C genotype 4 were randomly assigned to 48 weeks of either peginterferonalpha-2a (180 μ g/week) or peginterferon-alpha-2b (1.5 μ g/Kg/week) plus weight based oral ribavirin with a 24-week follow-up. The endpoint was the sustained virological response.

Results: Overall, sustained virological response was achieved by 85 patients (70.2%), while 26 patients relapsed (21.5%). Rapid virological response occurred in 95 patients where 77 of them achieved SVR (84.6%) and 14 of them relapsed (15.4%). According to Metavir score, F_3 stage significantly affects sustained virological response compared to stage F_1 with an OR 5.9 (95% CI: 1.1-31.0) and compared to F_2 with an OR 7.2 (95% CI: 1.3-40.9).

Conclusion: Rapid virological response is an independent factor affecting sustained virological response. Also, low pretreatment fibrosis stage is a predictor of sustained virological response.

Keywords: Rapid virological response; sustained virological response; peginterferon; ribavirin

List of contents

Title	Page no.
List of tables	i
List of figures	iii
List of abbreviations	v
Introduction	1
Hepatitis C virus	
Causative agent and virology	3
• Epidemiology	6
• Genotypes	7
Mode of transmission	9
Natural history and clinical manifestations	12
• Diagnosis	15
• Treatment	19
• Prevention and control of hepatitis C virus	40
Aim of the work	41
Patients and methods	42
Results	66
Discussion	89
Summary and Conclusion	98
Recommendations	102
References	103

List of Tables

HCV

Table Nº	Title	
i	Prevalence of HCV Genotype 4 and Distribution of Subtypes in Different Geographic Regions	8
ii	METAVIR fibrosis staaging scale	18
iii	METAVIR activity grading scale	
iv	Dosing of PEG-IFN and Ribavirin	24
v	Virological Responses During Therapy and Definitions	27

Results

Table Nº	Title	Page Nº
1	Demographic data, fibrosis stage of RVR and non-RVR patients	67
2	Biochemical, hematological data and viral load measured at week zero	68
3	Biochemical and hematological data measured at week 4	68
4	RVR as a predictor for achieving SVR	69
5	Age as a host predictor factor for achieving RVR	70
6	Age as a host predictor for achieving SVR	71
7	Body weight as a host predictor factor for achieving RVR	73
8	Body weight as a host predictor factor for achieving SVR	74

Table Nº	Title	Page N°
9	Gender as a host predictor factor for achieving RVR	75
10	Gender as a host predictor factor for achieving SVR	76
11	Baseline viral load ($\leq 4x10^5$) as a viral predictor factor for achieving RVR	77
12	Baseline viral load ($\leq 6x10^5$) as a viral predictor factor for achieving RVR	78
13	Baseline viral load ($\leq 8x10^5$) as a viral predictor factor for achieving RVR	79
14	Baseline viral load ($\leq 4x10^5$) as a viral predictor factor for achieving SVR	80
15	Baseline viral load ($\leq 6x10^5$) as a viral predictor factor for achieving SVR	81
16	Baseline viral load ($\leq 8x10^5$) as a viral predictor factor for achieving SVR	82
17	Activity grades as host predictor factor for achieving RVR	84
18	Activity grades as host predictor factor for achieving SVR	85
19	Fibrosis stage as host predictor factor for achieving RVR	86
20	Fibrosis stage as host predictor factor for achieving SVR	87
21	Multivariate analysis of the two factors affecting SVR	88

List of Figures

Figures of review:

Figure Nº	Title	Page Nº
i	Schematic representation of the hepatitis C virus genome	3
ii	Natural History of HCV Infection	
iii	Graphic display of virological responses	30

Figures of results

Figure N^o	Title	Page Nº
1	RVR as a predictor for achieving SVR	69
2	Age as a host predictor factor for achieving RVR	70
3	Age as a host predictor for achieving SVR	71
4	Body weight as a host predictor factor for achieving RVR	73
5	Body weight as a host predictor factor for achieving SVR	74
6	Gender as a host predictor factor for achieving RVR	75
7	Gender as a host predictor factor for achieving SVR	76
8	Baseline viral load ($\leq 4x10^5$) as a viral predictor factor for achieving RVR	77

Figure N°	Title	
9	Baseline viral load ($\leq 6x10^5$) as a viral predictor factor for achieving RVR	78
10	Baseline viral load ($\leq 8x10^5$) as a viral predictor factor for achieving RVR	79
11	Baseline viral load ($\leq 4x10^5$) as a viral predictor factor for achieving SVR	80
12	Baseline viral load ($\leq 6x10^5$) as a viral predictor factor for achieving SVR	81
13	Baseline viral load ($\leq 8x10^5$) as a viral predictor factor for achieving SVR	82
14	Activity grades as host predictor factor for achieving RVR	
15	Activity grades as host predictor factor for achieving SVR	85
16	Fibrosis stage as host predictor factor for achieving RVR	86
17	Fibrosis stage as host predictor factor for achieving SVR	87

List of abbreviations

Abbreviations	Meaning
AASLD	American Association for the Study of Liver Disease
AFP	Alpha Fetoprotein
AHC	Acute Hepatitis C
ALT	Alanine aminotransferase
ANA	Antinuclear antibodies
ARF	Alternate Reading Frame
AST	Aspartate aminotransferase
b-DNA	Branched DNA
BMI	Body Mass Index
BUN	Blood Urea Nitrogen
CBC	Complete Blood Count
CCG	Cysteine- Cysteine-Glycine
CD4, CD81	Cluster of differentiation 4 and 81
CDC	Center for Disease Control and Prevention, USA
CHC	Chronic hepatitis C
DM	Diabetes Mellitus
DNA	Deoxy ribonucleic acid
E1&E2	Envelope protein 1 and 2
ECG	Electrocardiogram
EIA	Enzyme Immunoassay
ELISA	Enzyme linked immunosorbent assay
ETR	End of Treatment Response
EVR	Early Virological Response
F	Frame shift
GGT	Gamma Glutamyl Transpeptidase
HAART	Highly Active Antiretroviral Therapy
HALT-C	Hepatic C Antiviral Long term Treatment Against Cirrohsis
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B Virus
HCC	HepatoCellular Carcinoma
HCV	Hepatitis C Virus
HCV Abs	Hepatitis C virus antibodies
Hgb	Hemoglobin
HIV	Human Immunodeficiency Virus
I.M	Intramuscular
IASL	International Association for the Study of the Liver
IFNα	Interferon Alfa
INR	International Normalized Ratio
ISDR	Interferon-α Sensitivity Determining Region

Abbreviations	Meaning
IU	International Unit
LEL	Large Extracellular Loop
NIH	National Institute of Health
NPV	Negative Predictive Value
NS	Non-Structural protein
NS2,NS3,NS4,NS5	Non Structural proteins 2, 3, 4, 5
P7	Protein 7
PCR	Polymerase Chain Reaction
PEG-IFN	Pegylated Interferon
PPV	Positive Predictive Value
PT	Prothrombin Time
RBCs	Red Blood Cells
RBV	Ribavirin
RIBA	Recombinant ImmunoBlot Assay
RNA	Ribonucleic acid
RT-PCR	Real time polymerase chain reaction
RVR	Rapid Virological Response
S.C	Subcutaneous
SD	Standard Deviation
SEL	Small Extracellular Loop
SVR	Sustained Virological Response
TMA	Transcription-Mediated Amplification
TSH	Thyroid-Stimulating Hormone
WBCs	White Blood Cells
WHO	World Health Organization
Wk	Week
Yr	Year
MMWR	Morbidity and Mortality Weekly Report

Introduction

INTRODUCTION

Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) and is a major problem throughout the world. Approximately 500 million persons are living with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, which contribute to nearly 1 million deaths annually (*CDC*, 2012).

Egyptian Ministry of Health annual report (2007) and El Kady et al. (2009) revealed that Egypt has the highest prevalence of HCV infection worldwide (15%) and interestingly genotype 4 represents over 90% of cases.

Chronic hepatitis C infection may result in serious sequelae, such as endstage cirrhosis, hepatocellular carcinoma (HCC), need for liver transplantation and premature death (*Perz et al.*, 2006).

Both the National Institute of Health (NIH) and the American Association for the Study of Liver Disease (AASLD) have reported that the most efficacious treatment for this disease is the combination of weekly subcutaneous injections of long-acting pegylated-interferon (PEG-IFN) alfa and oral daily ribavirin, as such, this regimen represents the current standard of care (*Fried et al.*, 2002).

The standard duration of therapy in patients with genotype 4 infection is 48 weeks. This results in an SVR of 40% to 79% (*Diago et al., 2004; Kamal et al., 2005*).

Early assessment of viral kinetics during treatment accurately predicts response to therapy and provides additional information about how to individualize treatment (*Ferenci et al., 2005*). Consequently, duration of therapy may be shortened for patients who respond rapidly and extended for those who respond slowly. Shortened courses of treatment may be useful if adverse effects or costs are an issue and are particularly valuable in patients who experience substantial adverse effects that may pose a health risk if treatment is continued. Thus, Rapid virological response (RVR) provides complementary information and represents a key opportunity to individualize treatment and improve the benefit/risk ratio of therapy. RVR, defined as an undetectable serum HCV RNA level at week 4 of treatment (*Poordad et al., 2008*).

Review of Literature