CARDIOPROTECTIVE EFFECTS OF ERYTHROPOIETIN HORMONE: A STUDY ON A POSSIBLE ROLE IN HEART FAILURE AND MYOCARDIAL INFARCTION: ELUCIDATION OF UNDERLYING MECHANISMS.

Thesis
Submitted in partial fulfillment for master degree in
Basic medical science
Physiology

By:

Wael Botros Abu-Alyamin Ghaly

Supervised by:

Prof.Dr.Hania Ibrahim Ammar

Professor of Physiology Faculty of medicine-Cairo University

Prof.Dr.Soliman Saba

Professor of Pathology Faculty of medicine-Cairo University

Prof.Dr.Laila Ahmed Elsayed

Assistant professor of Physiology Faculty of medicine-Cairo University

Faculty of medicine Cairo University 2009

دراسة فى الدور الوقائى المحتمل لهرمون الاريثروبيوتين علي عضلة القلب فى حالات ضعف عضلة القلب واحتشاء القلب مع توضيح الآليات المؤدية لذلك.

ر سالة مقدمة من:

الطبيب /وائل بطرس ابو اليمين غالي

توطئة للحصول علي درجة الماجستير في الفسيولوجي

تحت اشر اف

الاستاذة الدكتورة/مانية ابراميم عمار

استاذ الفسيولوجي كلية الطب - جامعة القاهرة

الاستاذ الدكتور/سليمان سابا

استاذ الباثولوجي كلية الطب – جامعة القاهرة

الأستاذة الدكتورة/ليلي أحمد السيد

أستاذ مساعد الفسيولوجي كلية الطب - جامعة القاهرة

> كلية الطب جامعة القاهرة ٢٠٠٩

Acknowledgement

First of all, and above all – I thank God, the creator for His gift of life, mind, power and success. I believe that every work and the whole life without faith has no meaning.

I would like to express my special sincere gratitude and deep thanks to Prof. Dr. Hania Ibrahim Ammar, Prof. of physiology, Cairo University for her kind supervision, support, guidance and great help throughout the course of this study. I believe that her encouragement was behind the completion and success of this work.

I would like also to express my sincere gratitude and deep thanks to Prof. Dr. Soliman Saba, Prof of Pathology, Cairo University for his great effort, time, help and continuous supervision.

Deep appreciation is also introduced to Prof. Dr. Laila Ahmad El Sayed Assistant Prof. of Physiology, Cairo University for her meticulous supervision, scientific guidance and helpful cooperation throughout the work.

I would like to express my deep gratefulness and appreciation to Prof. Dr. Rasha Ibrahim Ammar, Prof. of Pediatrics, Cairo University for her great help in the Echocardiographic Measurements and for Prof. Dr. Dalia Ahmed Assistant Prof. of Community Medicine for her time and effort in statistical analysis.

To my family,

... Who taught me work ethics, self respect and to love what I do.

To my country Egypt,

... The land of history, science and civilization.

To my friends,

... Who added a lot to my life and supported me in tough situations.

....I dedicate this work

List of contents

Chapter	Page
List of abbreviations	I
List of tables	II
List of figures	IV
Introduction and aim of work	1
Review of literature:	
Heart failure: pathophysiology	5
and consequences.	
Cardiac Ischemia:	
pathophysiology and	42
consequences.	
Erythropoietin hormone.	64
Material and methods	93
Results	103
Discussion	143
Summary and recommendations	162
References	169
Appendix	207
الملخص العربي	220

ABBREVIATIONS

ACE Angiotensin-converting enzyme

ACF AortoCaval fistula.

Apaf-1 Apoptotic protease activating factor 1

ARC Apoptosis repressor with caspase recruitment domain.

 AT_1R Angiotensin II type-1 receptor.

BK Bradykinin.

BNP B-type (Brain) natriuritic peptide.

CED-4 Cell death protein CK Creatine Kinase

COX Cyclooxygenase enzyme.

Cyt c cytochrome *c*

DAB 2,3-Diaminobenzidine tetrachloride

DCM Dilated Cardiomyopathy.
DOCA deoxycorticosterone.
EDV End Diastolic Volume.

EMCV M-variant of encephalomyocarditis virus

EPOR Erythropoietin receptor.

FADD Fas-Associated protein with Death Domain

FLIP FADD-like inhibitory proteins

GLUT Glucose transporter.

GPRKs G protein-coupled receptor kinases

ICM Ischemic Cardiomyopathy
iNOS Inducible Nitric oxide sythase
L-NAME NG-nitro-L-arginine methyl ester
MCP-1 Monocyte chemoattractant protein.

NO Nitric Oxide.

PARP Poly (ADP-ribose) polymerase.

PGC-1α proliferator activator receptor γ coactivator-1 α
PPAR Peroxisome proliferator-activated receptor
RAAS Renin-Angiotesin-aldosterone-system.

SP-SHRs sterone-prone spontaneously hypertensive rats

SWOP Second window of protection.

TCAs Tricyclic antidepressants.

List of the Tables

_

1-Table (1) Body weight, mean ABP, and Hematocrite values of all studied groups (mean ± SE) at the beginning & at the end of the experimental period
2- Table (2) Comparison between individual groups (P values) regarding body weight, mean ABP, and Hematocrite at the beginning of experimental period
3- Table (3) Intergroups comparison between all groups regarding the weight, mean ABP, and Hematocrite at the end of the experimental period (ANOVA test)
4- Table (4) Comparison between individual groups regarding the weight mean ABP, and Hematocrite in all studied groups at the end of experimental period (Bonferroni test)
5- Table (5): Echocardiographic data in all studied groups (mean±SE)110
6- Table (6) Comparison between each two individual groups in echocardiographic parameters
7-Table (7) Comparison in echocardiographic data at 2 weeks of experimental period

List of figures

Fig (1): Molecular structure of EPO showing sites of disulphide bonds66
Fig (2) The EPO receptor showing the intracellular signaling cascade67
Figure(3) showing the possible mechanism of EPO cardioprotection87
Figure(4) showing the echocardiographic records for the four groups (A: Control, B: EPO, C: EPO-AD"2 weeks", D: EPO-AD "4 WEEKS, E: AD)
Figure(5) showing the comparison among the four groups regarding the FS values (mean ± SE)
Figure(6) showing the functional recovery(mean \pm SE) of the four groups regarding the three parameters LVDP, dp/dt max, RPP
Figure(7) showing the comparison among four groups regarding each parameter(mean \pm SE) before and after ischemia (120 minutes)135
Figure(8) showing the histological sections of the four groups stained by H&E (A:Control, B: EPO, C: EPO-AD, D: AD)
Figure(9) showing the immunohistochemical staining by Caspase-3for the four groups (A: Control, B: EPO, C: EPO-AD, D: AD)
Figure(10) showing the Immunohistochemical staining by CD31 for the four groups (A: Control, B: EPO, C: EPO-AD, D: AD)

Erythropoietin (Epo), a hematopoietic cytokine that is basically released by the adult kidney in response to hypoxia, and is a potent stimulator of bone marrow red blood cell production. To fulfill its principal function, i.e. the regulation of red cell production, EPO binds to a surface receptor (EPO receptor) on the erythroid progenitor cells. After activation of the receptor and subsequent intracellular signaling cascades, survival of these cells is promoted by anti-apoptotic mechanisms.

Besides its primary role in promoting erythrocyte survival and differentiation, it has been recently discovered that this cytokine has several properties that can extend beyond its capacity to produce RBCs.

Recombinant human EPO (rhEPO) is widely used for the treatment of anemia occurring in the context of surgery, cancer, HIV, kidney failure. Its safety and toxicity profiles have been well established. Epo has been recently shown to enhance exercise capacity in patients with chronic heart failure as well as direct actions on platelets, vascular endothelium, smooth muscle, and myocytes of the heart.

A direct effect of EPO hormone in improving cardiac performance in pressure overload heart failure has also been recently observed. Studies on EPO R⁻/ null rescued mice suggested a potential protective role for EPO. However, despite a strong link between EPO receptor activation and cardiac improvement, the underlying mechanisms are still unclear. A possible induction of angiogenesis and angiogenic factors could explain such an effect (*Westenbrink et al*, 2007).

Furthermore, a strong correlation between plasma levels of Epo and left ventricular functions in cardiomyopathy was also reported (*Longhu et al*, 2006).

In the context of ischemia, a cytoprotective effect for Epo hormone has been recently verified by data obtained from experimental studies showing that erythropoietin can have a dramatic neuroprotective effect in animal models of cerebral ischemia. This protective effect is attributed to an antiapoptic effect on neuronal cells, that is similar to its principal action on erythroid progenitor cells. This raised the possibility that erythropoietin can have an antiapoptotic effect on cardimyocyte as well (*Moon et al.*, 2003).

Indeed some recent studies have demonstrated that in in-vitro isolated perfused hearts exposed to Epo are protected against subsequent hypoxia (Cai et al, 2003). These protective actions have also been directly verified on cardiac cells as well. On isolated cultured H9c2 cardiac myoblasts (embryonic rat heart cells) preconditioned with EPO showed a better response to hypoxia (*Parsa et al.*, 2003). This suggests that the direct actions of Epo to prevent myocyte death independently of its effects on red blood cell number or cells other than cardiac myocytes. This emphasizes the potential role of Epo in the treatment of hearts particularly in limiting infarct expansion and attenuating the post-infarct deterioration in hemodynamic function. Furthermore, evidences for the existence of delayed and immediate actions of Epo suggest that mechanisms proposed involve a genomic action as well as a rapid non genomic action probably referred to its ability to scavange free radicals particularly H₂O₂. Despite such observations the signal transduction pathways activated by Epo to protect the heart have not been clearly identified. However, the erythropoietin receptor EPOR is widely distributed in the cardiovascular system, including endothelial cells, smooth muscle cells and cardiomyocytes and despite a wide overlap in the signaling pathways activated by EPO-R, an anti-apoptotic activity is strongly suggested in the cardiovascular system. In myocardial infarction apoptosis has been reported at acute stages of evolution in the ischemic area as well as in remote zones. In the ischemic area it might be a determinant of the final size of the infarct and it seems to depend on the presence of post-ischemic reperfusion. It seems likely that the preconditioning with Epo with other agents can confer myocardial protection against ischemia-reperfusion injury, in terms of reduction in cellular apoptosis and necrosis (*Daisuke et al.*, 2006).

According to the for mentioned information, we hypothesized a potential therapeutic role for EPO in the failing heart both in improving cardiac performance and increasing resistance in the face of ischemic challenges. We also hypothesized that such protective function for EPO hormone can be partially based on it antiapoptotic actions.

AIM OF THE WORK:

The aim of this study therefore, is to:

- 1- Evaluate the direct effect of in vivo Epo administration on improving the myocardial contractility in a rat model of heart failure.
- 2- Clarify the role of Epo preconditioning in cardioprotection against ischemic injury using an in vitro model of global ischemia.
- 3- Unravel the possible underlying mechanisms for EPO protective effects in heart failure and associated infarction.

HEART FAILURE : PATHOPHYSIOLOGY AND CONSEQUENCES

Heart failure is the pathophysiologic state in which the heart fails to pump blood at a rate sufficient for the requirements of the metabolizing tissues and/or pumps only from an abnormally elevated diastolic filling pressure. This impairment of pump performance leads to increased pulmonary and systemic venous pressures, reduced cardiac output and molecular abnormalities that cause progressive deterioration of the heart and premature myocardial cell death.

It is estimated that there are more than 15 million new cases of heart failure each year worldwide. There are about 500,000 new cases of heart failure diagnosed each year in the USA, and ten times that number of Americans currently in heart failure. The numbers are rapidly increasing because of the aging population. Heart failure is the leading cause of hospitalization of patients over 65 years in age. Despite many new advances in drug therapy and cardiac assist devices, the prognosis for chronic heart failure remains very poor. One year mortality figures are 50-60% for patients diagnosed with severe failure, 15-30% in mild to moderate failure, and about 10% in mild or asymptomatic failure (*Towbin JA and Bowles NE*, 2002).

The primary abnormality in heart failure is the hemodynamic disorders including: impaired pump performance leading to increased pulmonary and systemic venous pressures, fluid retention, and low cardiac

output. The fall in cardiac output leads to activation of several neurohormonal compensatory mechanisms aimed at improving the mechanical functions of the heart such as norepinephrine, vasopressin, and atrial natriuretic peptide.

Norepinephrine increases afterload by systemic vasoconstriction and increases chronotropy and inotropy by direct stimulation of cardiac myocytes. Plasma concentrations of various other neuroendocrine markers correlate with both the severity of heart failure and the long term prognosis. For example, raised plasma concentrations of N-terminal and C-terminal atrial natriuretic peptide and of brain natriuretic peptide are independent predictors of mortality in patients with chronic heart failure. Patients with congestive heart failure and raised plasma noradrenaline concentrations also have a worse prognosis (*Reynolds M. Delgado and James T. Willerson*, 1999).

failure As heart advances and/or progressively becomes decompensated, there is a relative decline in the counterregulatory effects of endogenous vasodilators, including nitric oxide (NO), prostaglandins (PGs), bradykinin (BK), atrial natriuretic peptide (ANP), and B-type natriuretic peptide (BNP). This occurs simultaneously with the increase in vasoconstrictor substances from the RAAS and adrenergic systems. This fosters further increases in vasoconstriction and thus preload and afterload. leading to cardiac fibroblast proliferation, adverse myocardial remodeling, and antinatriuresis with total body fluid excess and worsening of CHF symptoms (*Gary S.*, *2001*).

It was also reported that there is an increase in plasma level of Epo in proportion to the degree of cardiac dysfunction. Patients with CHF by