Biliary Sludge and Stones in Mentally Retarded Patients.

THESIS

Submitted for partial fulfillment of Master degree in Pediatrics

Ву

Abdel Rahman Ramadan Abdel Rahman M.B.B.CH

Supervised by

Dr: Amani Osman Mahmoud

Professor of Pediatrics
Faculty of Medicine – Ain shams University

Dr: Osama Kamal Zaki

Consultant of Medical Genetics

Genetics Unit – Faculty of Medicine

Ain shams University

Faculty of Medicine Ain shams University 2013

TO MY FATHER AND MOTHER

TO MY DEAR WIFE

TO MY LOVELY OMAR & JOOD

THIS WORK IS DEDICATED

abdelrhman

Acknowledgment

First and foremost, thanks ALLAH for whom I always pray to give me the ability to do my work faithfully.

I would like to express my sincere gratitude and deep appreciation to Dr.: Amani Osman Mahmoud, Professor of pediatrics, Faculty of medicine, Ain shams university for her helpful guidance, valuable suggestions, great patience and follow up throughout the research.

I am gratefully thankful to Dr.: Osama Kamal Zaki, Consultant of medical genetics, genetic unit, Faculty of medicine, Ain shams university for his generous advice, kind supervision, continuous support and helpful guidance during the conduction of this work

Many thanks to all members of the pediatrics department for their help and advice.

Many thanks to the laboratory and ultrasonography members participated in this work.

Thanks to all patients and their parents.

LIST OF ABBREVATIONS

AAI	Atlantoaxial instability		
AAP	American Academy of Pediatrics		
ABC-1	Aberrant Behavior Checklist		
ACOG	American College of Obstetricians and Gynecologists		
AFP	Alpha -Fetoprotein		
AML	Acute myeloid leukemia		
BEAR	Brainstem auditory evoked response		
CBD	Common bile duct		
CNS	Central nervous system		
CVS	Chroionic villus sampling		
DSM-1V-TR	The Diagnostic and Statistical Manual of Mental Disorders,		
	Fourth Edition, Text Revision		

ERS	Endoscopic retrograde sphincterotomy		
GI	Gastrointestinal		
_			
hcG	Human Chorionic Gonadotropin		
ID	Intellectual disabilities		
IQ	Intelligence quiescent		
MR	Mental retardation		
MRI	Magnetic resonanance imaging		
NH	Neonatal hemochromatosis		
NHANES	The National Health and Nutrition Examination Survey		
NIH	National institute of health		
NT	Nuchal Transluceny		
OAE	Otoacoustic emission		
PKU	Phenylketonurea		
RUQ	Right upper quadrant		
TDM	Transient myeloproliferative disorder		
TL	Transient leukemia		
TSH	Thyroid stimulating hormone		
UCDA	Ursodeoxycholic acid		
US	United states		

CONTENTS

Introduction	1
Aim of the work	2
Review of literature	3
Chapter 1: mental retardation	
Background	3
Epidemiology	5
Causes	6
Symptoms and signs	13
Diagnosis	16
Management	22
Course and prognosis	26
Society and culture	27

Chapter 2 :Down syndrome	
Background	29
Epidemiology	29
Cytogenetics	30
Risk factors	34
Diagnosis	36
Screening	41
Complications	53
Management	69
Follow-up	78
Prognosis	79
Chapter 3: gallstone	
Background	81
Characteristics and composition	82
Epidemiology	89
Symptoms and signs	91
Risk factors	93
Diagnosis	97
Complications	100
Morbidity and mortality	102
Treatment	103
Subjects and methods	108
Results	112
Discussion	128
Summary	135
Conclusion	137
Recommendations	138
References	139
Arabic summary	1

LIST OF TABLES

Table	Title	Page
No.		
1	The risk of Down syndrome with the mother's	35
	age	
2	Detection of biliary sludge and / or stones by	112
	abdominal ultrasonography of all cases.	
3	Mean age (year) and laboratory data of all	112
	subjects.	
4	Mean age (year) and laboratory data of Down	112
	syndrome cases.	
5	Mean age (year) and laboratory data of Non -	113
	Down cases.	
6	Comparison between the age of Down and	113
	Non-Down patients.	
7	Comparison between Down and Non-Down	114
	patients and regards Total Bilirubin.	
8	Comparison between Down and Non-Down	115
	patients and regards Direct Bilirubin.	
9	Comparison between Down and Non-Down	116
	patients and regards Serum Cholesterol.	
10	Correlation between level of serum Bilirubin	117
	(T) and serum cholesterol in Down patients.	
11	Comparison between both males and females	119
	with Down syndrome as regards degree of	
	mental retardation.	
12	Comparison between both males and females	119
	with non-Down MR as regards degree of	
	mental retardation.	
13	Comparison between both groups as regards	120
	degree of mental retardation.	
14	Correlation between level of Cholesterol and	120

	Degree of MR in Down syndrome patients.	
15	Correlation between level of serum Bilirubin	121
	(T) and Degree of MR in Down syndrome	
	patients.	

	Correlation between level of serum direct	121
16	bilirubin (D) and Degree of MR in Down	
	syndrome patients.	
17	Correlation between Weight and Degree of	122
	MR in Down syndrome patients.	
18	Correlation between Height and Degree of MR	122
	in Down syndrome patients.	
19	Correlation between level of Cholesterol and	122
	Degree of MR in non-Down syndrome	
	patients.	
20	Correlation between level of serum Bilirubin	123
	(T) and Degree of MR in non-Down syndrome	
	patients.	
21	Correlation between level of serum direct	123
	bilirubin (D) and Degree of MR in non-Down	
	syndrome patients.	
22	Correlation between Weight and Degree of	124
	MR in non-Down syndrome patients.	
23	Correlation between Height and Degree of MR	124
	in non-Down syndrome patients.	
24	Summary statistics table	124
25	Correlation between age and weight in Down	125
	patients.	
26	Correlation between age and Cholesterol in	125
	Down patients.	
27	Correlation between Cholesterol and weight in	126
	Down patients.	
28	Correlation between age and weight in non-	126
	Down patients.	
29	Correlation between age and Cholesterol in	127
	non-Down patients.	
30	Correlation between Cholesterol and weight in	127
	non-Down patients.	

LIST OF FIGURES

Figure No.	Title	Page
1	Karyotype from a patient with down syndrome.	30
2	Example of a Robertsonian Translocation	32
3	Clinical features of down syndrome.	41
4	Mean Age in Down and Non-Down patients.	114
5	Mean Total Bilirubin (T) in Down and Non-Down patients.	115
6	Mean Serum Bilirubin (D) in Down and Non-Down patients.	116
7	Mean serum cholesterol in Down and Non-Down patients.	117
8	Scatter Diagram Showing correlation between serum bilirubin (T) and serum cholesterol in Down patients.	118
9	Scatter Diagram Showing correlation between serum bilirubin (T) and serum cholesterol in Non - Down patients.	118

INTRODUCTION

Mental retardation (MR) refers to a group of disorders that have in common deficits of adaptive and intellectual function and an age of onset before maturity is reached. (Bruce et al., 2004).

IQ scores of Down's syndrome patients range from 25 to 75 with an average of 40 to 45 in young adults. (Peter, 2005). Before the 1980s, few cases of cholelithiasis in children, relating to hemolytic anemia, had been described in the medical literature. The use of ultrasonography increased the frequency of diagnosis of cholelithiasis in childhood . The prevalence of cholecystolithiasis may be increasing in childhood and adolescence (Kang et al., 2003).

An overall prevalence of 0.13% to 1.9% for gallstone disease in children up to 19 years of age was reported (Herzog and Bouchard, 2008).

Some reports have showed that biliary abnormalities like lithiasis and biliary sludge occur more frequently among Down syndrome patients.

(Toscano et al.,2001)

AIM OF THE WORK

The aim of this study is to detect the prevalence of biliary sludge and stones among mentally retarded patients.

GALLSTONE

Background

allbladder disease is one of the most common and costly digestive diseases that requires hospitalization in the United States. Gallbladder calculi are more common in the adult population and remain relatively uncommon in children; however, the incidence of cholelithiasis in children has increased. (George and David, 2009).

There are over 700,000 cholecystectomies (removal of the gallbladder) performed in the United States each year, Complications are not common and mortality from the disease is very, very low. There are risk factors that increase the chances of developing gallstones— e.g., gender, age, and genetic traits — that cannot be changed, but there are many lifestyle risk factors, as well. (Shaffer, 2006)

Gallstone formation is therefore very poorly understood. Surprisingly, in the last few decades there

has been significant rise in gallstone disease among children. (Kumar et al., 2000).

Choledocholithiasis refers to the presence of gallstones within the common bile duct (CBD). (Everhart et al., 1999).

Sludge is defined as an echogenic material within the gallbladder that layers and changes shape and position on moving the patients. (Winter et al., 1994)

Normal common bile duct diameter between 5-8mm. Allowance for a larger diameter is sometimes accepted in older patients. (Daradkeh et al., 2005)

The diameter of the duct may increase or decrease following cholecystectomy, but the change is generally not significant. (Channa et al., 2007 & Kim et al., 2003)

Characteristics and composition

The formation of gallstone in vivo takes years and it is quite difficult to monitor such events from nucleation to the consolidation. (Swidsinski et al., 1998)

Gallstones can vary in size and shape from as small as a grain of sand to as large as a golf ball. (George & David, 2009)

On the basis of their composition, gallstones can be divided into the following types:

• <u>Cholesterol stones</u> are formed from cholesterol supersaturation of bile and are composed of 70-100% cholesterol with an admixture of protein, bilirubin, and carbonate. These account for most gallstones in adults but make up only about 21% of stones in children. (National Institute of Diabetes and Digestive and Kidney Diseases, 2007).

Cholesterol stones vary in color from light-yellow to dark-green or brown and are oval 2 to 3 cm in length, often having a tiny dark central spot. To be classified as such, they must be at least 80% cholesterol by weight (or 70%, according to the Japanese classification system (Kim et al., 2003)

There are three reasons for the formation of cholesterol gallstones:

Cholesterol supersaturation of bile:

Bile acids and phospholipids normally help keep cholesterol soluble so that it does precipitate out. However, there are times when the ratio of bile acid and phospholipids to cholesterol in the bile is altered, the bile becomes supersaturated with cholesterol, and it crystallizes into cholesterol gallstones. This can happen when there is hypersecretion of cholesterol into bile by the liver (the most common cause) or hyposecretion of bile salts or phospholipids.