

جامعة عين شمس كليــــة الطـــب قسم جراحة المخ والأعصاب

التدخل الجراحي عبر الجيب الاسفيني في علاج اورام الغده النخاميه

رسالة مقدمة لكلية الطب - جامعة عين شمس ايفاء جزئيا لشروط الحصول على درجة الماجستير في جراحه المخ والاعصاب مقدمة من

الطبيب/ مصطفي ابراهيم محمد عزيز المازني بكالوريوس الطب والجراحة كلية الطب- جامعة طنطا

المشر فون أيد/ محمد اشرف غباشي أستاذ جراحة المخ والأعصاب كلية الطب جامعة عين شمس

أم د/ خالد محمد فتحي سعود أستاذ مساعد جراحة المخ والأعصاب كلية الطب جامعة عين شمس

د/ هشام انور عبد الرحيم مدرس جراحه المخ و الاعصاب كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٢ Ain Shams University Faculty of Medicine Neurosurgery Department

Transsphenoidal Surgery for Pituitary Adenoma Removal

Thesis Submitted For Partial Fulfillment of master Degree In Neurosurgery

BY

Mostafa Ibrahim Mohamed Aziz EL-Mazny M.B.B.CH.

Supervisors

Professor Dr.

Mohamed Ashraf Ghobashy

Professor of Neurosurgery Faculty of Medicine Ain Shams University

Ass. Prof. Dr

Khaled Mohamed Fathy Saoud

Assistant Professor of Neurosurgery Faculty of Medicine Ain Shams University

Dr.

Hisham Anwar Abdel Rahiem

Lecturer of neurosurgery Faculty of Medicine Ain Shams University Ain Shams University Faculty of Medicine 2012

Acknowledgement

First and foremost, thanks to GOD

the most beneficent and most merciful.

I wish to express my sincere appreciation and deepest gratitude to **Prof. Dr. Mohamed Ashraf Ghobashy** Professor of Neurosurgery Faculty of Medicine Ain Shams University. He devoted his time, effort and experience most generously throughout this work.

I would like to express my gratitude and deep appreciation to Ass. Prof. Dr. Khaled Mohamed Saoud Assistant Professor of Neurosurgery, Faculty of Medicine Ain Shams University, for his kind help, great interest, continuous supervision and constructive encouragement.

I am deeply grateful to **Dr. Hisham Anwar Abdel Rahiem** lecturer of neurosurgery Faculty of Medicine Ain Shams

University, to whom, I owe a very special debt. Without his wisdom, close and continuous supervision, creative thoughts, constructive criticism, relentless support and patience I would not have achieved any of what I have achieved today.

Last, but not least, I am very grateful to My Mother &

My Sisters who supported me to finish this work.

Contents

☐ Acknowledgment	
□ Abstract	
☐ List of figures	II
☐ List of tables	V
☐ List of abbreviations	VI
☐ Review of literature	1
■ Introduction	
■ Anatomy	
■ Surgical Anatomy of the Nose	
■ Surgical Anatomy of the Sphenoid Sinus	
■ Surgical Anatomy of the Hypophysis Cerebri	
■ Pathology	
■ Clinical Presentation	
■ Neurophthalmological Evaluation	
■ Neuroimaging	
■ Surgical procedures	
☐ Aim of the work	68
☐ Patients and Methods	69
	91
☐ Illustrative Cases	
☐ Discussion	
☐ Summary and conclusion	
☐ References	
☐ Arabic summary	

List of Figures

Fig. 1	Osteology of the right lateral nasal wall	4
Fig .2	Lateral wall of the nasal cavity	5
Fig .3	Dissection of the sphenopalatine artery	6
Fig .4	Sellar region	8
Fig .5	Relations of the sphenoid sinus	10
Fig.6	Anatomical variations of the sphenoid sinus pneumatization	11
Fig .7	Schematic representation of horizontal sections through the sphenoid bone	12
Fig .8	Bulges & Recesses into the sphenoid sinus walls	13
Fig .9	Anatomical variations in the course of the internal carotid artery in relation to the sphenoid sinus	14
Fig .10	Anatomy (A) schematic midline sagittal view of sella turcica, pituitary gland, and infundibulum (B) schematic coronal view of the cavernous sinuses, ICA, cranial nerves	15
Fig .11	A summary of the vasculature of the hypothalamic median eminence, infundibulum and the other regimes of the hypophysis cerebri	18
Fig .12	The "equilateral pyramid" of the suprasellar region	19
Fig .13	Structures found on the sides of the pyramid	20
Fig .14	Anterior view of gland	21
Fig .15	Sagittal sections (left) and superior views	22
	(right) of the sellar region showing the optic	
	nerve and chiasm, and carotid artery	
Fig .16	PRL producing cells	26
Fig .17	Localization and probable identification of masses by pattern of field loss.	37

Fig .18	The anterior chiasmal syndrome	39
Fig.19	Hemifield slide phenomena	40
Fig .20	Dynamic MRI before (A) and after 30 (B) of	42
	bolous CE show micro adenoma	
Fig .21	Pituitary macroadenoma (A) T1-weighted	43
	images without and (B) T1 with contrast	
Fig .22	CT scan on coronal plane; Presence of multiple	44
	septa within the sphenoid sinus	
Fig. 23	Sagittal CT reconstructions. (a) "Sellar", (b)	45
	"presellar", and (c) "conchal "-type sphenoid	
	sinus	
Fig. 24	The protocol of transsphenoidal approach for	51
	pituitary adenoma	
Fig .25	0° angled lens, 30° angled lens, 45° angled	52
Fig .26	Endoscopicshaft.	53
Fig .27	Irrigation sheath and pump.	53
Fig. 28	A) Pneumatic Holding Arms, B) Mechanical	53
	Holding Arms	
Fig. 29	Micro drill, Foot control, handpiece and	54
	standard attachment, Curved extended minimal	
	access attachments.	
Fig. 30	Positioning of the patient's head on the	56
	operating table	
Fig .31	Access to the sphenoid ostium through the	57
	center of the middle nasal turbinate	
Fig .32	Nasal phase	58
Fig .33	Sphenoid phase	59
Fig .34	Sellar phase	60
Fig .35	Opening the lateral sellar dura with a straight	65
	micro-blade or scalpel risks injury to the	
	cavernous ICA	

Fig.36	T1 and T2 weighted MRI with contrast (coronal	79
	and sagital views) showing pituitary	
	macroadenoma.	
Fig.37	The protocol of transsphenoidal approach for	87
	pituitary adenoma.	
Fig .38	sellar repair with fat grafting and duraseal	89
Fig .39	Operative time	95
Fig .40	Coronal MRI with contrast & sagittal MRI T ₁	99
	weighted image showed giant pituitary	
	adenoma with suprasellar extension and optic	
	chiasm compression. In case 1	
Fig .41	Coronal & sagittal MRI with contrast. Showing	100
	total tumor excision. In case 1	
Fig .42	Coronal MRI T ₁ weighted image & sagittal	101
	MRI with contrast showed giant pituitary	
	adenoma with suprasellar extension and optic	
	chiasm compression. In case 2	
Fig .43	Coronal & sagittal MRI with contrast. The	102
	tumor was totally excised. In case 2	
Fig .44	Coronal MRI T ₁ weighted image & sagittal	103
	MRI with contrast showed giant pituitary	
	adenoma with suprasellar and sphenoid sinus	
	extensions and optic chiasm compression. In	
	case 3	
Fig .45	Coronal & sagittal MRI with contrast. The	104
	tumor was totally excised. In case 3	
Fig .46	Coronal MRI with contrast & sagittal MRI T ₁	105
	weighted image showed pituitary adenoma with	
	optic chiasm compression. In case 5.	
Fig .47	Coronal & sagittal MRI with contrast. Showing	106
	total tumor excision, the pituitary gland & its	
	stalk looks free. In case 5	

List of Tables

Table 1	Tumors of Pituitary WHO Classification (2004)	25
Table 2	Classification and characteristics of pituitary	34
	adenoma types. Modified from Arafah &	
	Nasrallah with the permission from the	
	Society for Endocrinology, data also from	
	Sane in Välimäki <i>et al.</i> 2009 p.100 and Melmed 2003.	
Table 3	Sex distribution	91
Table 4	Age distribution	91
Table 5	Symptoms and signs	92
Table 6	Hormonal activity of the functioning	93
	adenomas	
Table 7	Hormonal activity of the pituitary adenomas.	93
Table 8	CT of the sphenoid sinus	93
Table 9	Tumor enhancement	94
Table 10	Tumor intensity on T2 WI MRI	94
Table 11	Tumor extension	94
Table 12	Field changes	95
Table 13	Approach & Technique	95
Table 14	Intraoperative finding	96
Table 15	Complications	96
Table 16	Prognosis	97
Table 17	Hormonal profile follow-up	97
Table 18	Post operative visual field (after one month)	98
Table 19	Tumor removal	98
Table 20	Post operative follow-up MRI (after six	98
	months)	

List of Abbreviations

ACTH	AdrenoCortico Tropic Hormone
ADH	Anti Diuretic Hormone
Ca	Calcium
CBC	Complete Blood Count
CRH	Corticotropin Releasing Hormone
CS	Cushing Syndrome
CSF	Cerebro Spinal Fluid
CT	Computerized Tomography
DDAVP	1-deamino-8-D-arginine vasopressin (desmopressin)
DI	Diabetes Insipidus
DM	Diabetes Mellitus
DMZ	Dexamethasone Suppression Test
EETS	Endoscopic Endonasal Transsphenoidal
F	Female
Fig	Figure
FSH	Follicular Stimulating Hormone
GH	Growth Hormone
GH-sec MA	Growth Hormone secreting Macro Adenoma
H&E	Hematoxylin And Eosin
HT	Hypothalamus

HTN	Hypertension
ICA	Internal Carotid Artery
IGF	Insulin Like Growth Factor
IHA	Inferior Hypophyseal Artery
IM	Intramuscular
IV	Intravenous
LH	Luteinizing Hormone
Lt	Left
M	Male
MRA	Magnetic Resonance Angiogram
MRI	Magnetic Resonance Imaging
MRV	Magnetic Resonance Veinogram
PA	Prothrombin Activity
PRL	Prolactin
PRL-sec MA	Prolactin secreting Macro Adenoma
PT	Prothrombin Time
RBS	Random Blood Sugar
Rt	Right
SC	Subcutaneous
SHA	Superior Hypophyseal Artery
T3	Tri-iodo tyrosine
T4	Tetra- iodo tyrosine

TSH	Thyroid-stimulating hormone
TSS	Transsphenoidal surgery
WHO	World Health Organization

Abstract

Pituitary tumors account for 15% of all primary brain tumors, which can be approached through either transcranial or transsphenoidal routes.

This study will include patients who are admitted to the neurosurgery department at Nasr City Insurance Hospital, Ain Shams University Hospital and Tanta University Hospital, during the period from May/2011 to July/2012.

20 patients were operated using the microscopic transsphenoidal approach with mean follow up of 12 months. 9 were functioning adenomas and 11 were non-functioning with varying degree of extension to the cavernous sinus. The most common complication was CSF leak (10%), transient DI (5%) and epistaxis (15%).

The result of this study support the safety and the efficacy of this approach to treat pituitary adenoma; however long term follow up is needed.

Introduction

Historically, the first successful removal of a pituitary tumor was performed by Schloffer in 1907, using an extracranial transsphenoidal approach through a superolateral nasoethmoidal route. Although Hirsch from Vienna pioneered in 1909 an inferolateral endonasal approach, Harvey Cushing ingeniously introduced a new method that combined the advantages of previous technical modalities; he deserves the credit for having standardized an oronasal midline rhino septal transsphenoidal approach. He routinely used this method during a 20-year period for over 247 cases of pituitary tumor, remaining faithful to an early statement that "the important factor seems to me a direct extracranial midline approach by the shortest possible route. (Hardy J, 1996)

Pituitary tumors are common lesions believed to account for 10-15 % of all primary brain tumors. The pituitary tumors are the third most common primary intracranial tumors. (**Thapar K et al., 1995**)

The pituitary gland consists of the adenohypophysis (anterior lobe) which constitutes the major portion (three fourths) of the pituitary gland and neurohypophysis (posterior lobe) which constitutes only (one fourth) of the gland. (Gibo H et al., 1993)

The pituitary gland lies within a bony depression called the sella turcica within the sphenoid bone at the base of the brain. Access to the sella is limited from above by the optic nerves and chiasm and the circle of Willis, It is from the hypothalamus that hypothalamic tropic factors are released to descend down the pituitary stalk to the pituitary gland where they stimulate

the release of pituitary hormones. While the pituitary gland is known as the 'master' endocrine gland, both of the lobes are under the control of the hypothalamus; the anterior pituitary receives its signals from the parvocellular neurons and the posterior pituitary receives its signals from magnocellular neurons. (Gibo H et al., 1993)

The pituitary adenomas arise from adenohypophysis may be microadenomas or macroadenomas. The former are less than 1 cm in diameter, and the latter are more than 1 cm in diameter. It may be functioning or non functioning. The former is manifested early than the later due to endocrinological manifestations. Pituitary tumors cause symptoms by secreting hormones (prolactin, PRL, responsible for amenorrhea-galactorrhea in women and decreased libido in men; growth hormone, GH, responsible for acromegaly; adrenocorticotropic hormone, ACTH, responsible for Cushing's syndrome; thyroid-stimulating hormone, TSH. responsible for hyperthyroidism), depressing the secretion of hormones (hypopituitarism), or mass-related effects (headaches, visual field abnormalities...). bv (Chanson P, et al., 2004).

Diagnosis of pituitary adenoma has been established on the basis of clinical examination, neuroimaging studies and endocrinological testing. MRI with Gadolinium is the most useful modality for imaging the pituitary gland, sellar and parasellar region and to assess the site of the tumor, exact location, extension into the cavernous sinus and the degree of edema. (John T, et al., 2008).