IMPACT OF SOME MARKER AND MAJOR GENES ON IMMUNE STATUS AND EGGSHELL ULTRASTRUCTURE OF CHICKEN

By

ABDELMONIEM MOHAMED ABDELMONIEM

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2009

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Poultry Breeding)

Poultry Production Department

Faculty of Agriculture

Ain Shams University

Approval Sheet

IMPACT OF SOME MARKER AND MAJOR GENES ON IMMUNE STATUS AND EGGSHELL ULTRASTRUCTURE OF CHICKEN

Ву

ABDELMONIEM MOHAMED ABDELMONIEM

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2009

This thesis for M.Sc. degree has been approved by:				
Dr.	Dr. Mahmoud Maghraby Iraqi Amer			
	Prof. of Poultry Breeding, Faculty of Agric., Benha University			
Dr.	Hassan E. Ayoub			
	Prof. Emeritus of Poultry Breeding, Faculty of Agric., Ain Shams University			
Dr.	Usama Mohamed Ali Shoureap			
	Prof. of Poultry Breeding, Faculty of Agric., Ain Shams University			
Dr.	Ahmed Galal El-Sayed Gad			
	Prof. of Poultry Breeding, Faculty of Agric., Ain Shams University			

Date of examination: 13/3/2013

ON IMMUNE STATUS AND EGGSHELL ULTRASTRUCTURE OF CHICKEN

Ву

ABDELMONIEM MOHAMED ABDELMONIEM

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2009

Under the supervision of:

Dr. Ahmed Galal El-Sayed Gad

Prof. of Poultry Breeding, Poultry Production Dept., Faculty of Agric., Ain Shams University (Principal Supervisor)

Dr. Usama Mohamed Ali Shoureap

Prof. of Poultry Breeding, Poultry Production Dept., Faculty of Agric., Ain Shams University

Dr. Mahmoud Yousef Mahrous

Lecturer of Poultry Breeding, Poultry Production Dept., Faculty of Agric., Ain Shams University

ABSTRACT

Abdelmoniem Mohamed Abdelmoniem: Impact of some Marker and Major Genes on Immune Status and Eggshell Ultrastructure of Chicken. Unpublished M.Sc. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Egypt, 2013.

The effect of naked neck (Na), frizzle (F) and double segregation genes on productive performance, immune response and eggshell ultrastructure of chicken was performed under prevailing conditions.

The presence of naked neck gene in a double state with frizzled gene had significantly increased in body weight at 12 weeks of age, relative weight of dressing and breast muscles weight compared to normal feathering counterparts.

With respect to the immune response, the presence of naked neck (Na) gene in a single state or interacted with frizzle gene significantly increased dermal swelling response to phytohemagglutinin-P (PHA-P) injection compared to nanaff counterparts. The antibody level against SRBCs of NanaFf and Nanaff genotypes was significantly higher than that of nanaff ones.

Concerning mechanical and ultrastructure eggshell, it could be speculated that the eggs produced from birds carrying Na gene in a single manner had owned better thickness and breaking strength compared to other produced from nanaff sibs. The presence of Na gene in a single state significantly increased relative palisade layer thickness compared to nana genotype. Opposite trend was noticed for relative mammillary thickness. Type B bodies, which are rounded and located among mammillary caps, were more frequent in eggshell of nanaff genotype resulting in poor eggshell quality.

In conclusion, the naked neck, frizzle and double segregation genes were significantly improved the immune response and eggshell ultrastructure under prevailing environmental conditions.

Key words: Naked neck, Frizzle, Immunity, Eggshell, Ultrastructure

Numbering	CONTENTS	Page
I	LIST OF TABLES	IX
II	LIST OF FIGURES	XII
III	LIST OF ABBREVIATION	XV
IV	INTRODUCTION	1
V	REVIEW OF LETERATURE	3
1.	Marker and major genes in poultry	3
1.1.	Naked neck gene	4
1.2.	Frizzle gene	4
2.	Effect of (naked neck, frizzle & double segregation	
	genes) on feather structure and distribution	5
3.	Thermoregulation and resistance to heat stress by	
	(naked neck, frizzle & double segregation genes)	8
4.	Effect of major and marker genes on Incubation	
	measurements	16
4.1.	Fertility	16
4.2.	Hatchability	17
4.3.	Mortality and Viability	18
4.4.	Water loss from egg during Incubation	19
4.5.	Chick yield to Egg weight	20
5.	Effect of major and marker genes on phenotypic	
	characters	21
5.1.	Body weight and body weight gain	21
5.1.1.	Body weight	21
5.1.2.	Body weight gain	26

5.2.	Feed consumption and feed conversion ratio	28
5.2.1.	Feed consumption and feed conversion ratio for growing	
	birds	28
5.2.2.	Feed consumption and feed conversion ratio for laying	
	hens.	31
5.3.	Carcass composition	32
5.4.	Abdominal fat	37
5.5.	Sexual maturity measurements	38
5.5.1.	Age at sexual maturity	38
5.5.2.	Body weight at sexual maturity	39
5.5.3.	Body measurements at sexual maturity	40
5.5.3.1.	Shank length	40
5.5.3.2.	Keel length	42
5.5.3.3.	Body depth	42
5.5.3.4.	Comb and wattle length	43
5.5.4.	Rectal temperature at the first egg laid	43
5.6.	Egg production measurements	44
5.6.1.	Egg weight	45
5.6.2.	Egg number	47
5.6.3.	Egg mass	49
5.7.	Egg quality measurements	50
5.7.1.	External egg quality	50
5.7.1.1.	Shape index	51
5.7.1.2.	Eggshell quality measurements	52
5.7.1.2.1.	Eggshell percentage	52

5.7.1.2.2.	Eggshell thickness	52
5.7.1.2.3.	Eggshell breaking strength	53
5.7.2.	Internal egg quality	54
5.7.2.1.	Yolk quality measurements	54
5.7.2.1.1.	Yolk weight and percentage	54
5.7.2.1.2.	Yolk index	55
5.7.2.2.	Albumen quality measurements	55
5.7.2.2.1.	Albumen weight and percentage	55
5.7.2.2.2.	Haugh units	56
6.	Effect of major and marker genes on blood parameters	57
6.1.	Hematocrit value	57
6.2.	Cholesterol level	58
6.3.	Triglycerides level	59
7.	Effect of major and marker genes on immune response	60
7.1.	Relative lymphoid organs weight	60
7.2.	Cell mediated immunity	62
7.3.	Humoral immune response	63
7.4.	Phagocytic activity	65
8.	Scanning electron microscopy technique	66
8.1.	Eggshell ingredients formation	67
8.2.	Importance of scanning electron microscopy technique	
	and eggshell ultrastructural assay	69
8.3.	Ultrastructure shell formation	71
8.3.1.	Eggshell membranes	72
8.3.2.	Mammillary layer or caps	72

8.3.3.	Palisade layer (effective thickness)	74
8.3.4.	Crystal layer	76
8.3.5.	Vertical crystal layer	77
8.4.	Ultrastructural various structures assessed of the	
	mammillary layer	77
VI	MATERIALS AND METHODS	83
1.	Measurements and observations	90
1.1.	Incubation measurements	90
1.1.1.	Fertility and hatchability	90
1.1.2.	Water loss from egg during incubation and chick yield	
	percentage	90
1.2.	Phenotypic characters	91
1.2.1.	Body weight and body weight gain	91
1.2.2.	Feed consumption and feed conversion ratio	92
1.2.3.	Carcass measurements	92
1.2.4.	Sexual maturity measurements	93
1.2.4.1.	Age at sexual maturity	93
1.2.4.2.	Body weight at sexual maturity	94
1.2.4.3.	Body measurements at sexual maturity	94
1.2.4.3.1.	Head appendages (comb and wattle lengths)	94
1.2.4.3.2.	Shank length	94
1.2.4.3.3.	Body depth	94
1.2.4.3.4.	Keel length	94
1.2.4.4.	Rectal temperature at the first egg laid	95

1.2.5. Egg production measurements	
1.2.5.1. Egg number	95
1.2.5.2. Egg weight	95
1.2.5.3. Egg mass	95
1.2.6. Egg quality measurements	95
1.2.6.1. External egg quality	95
1.2.6.1.1. Egg weight	95
1.2.6.1.2. Shape index	96
1.2.6.1.3. Shell weight	96
1.2.6.1.4. Shell thickness	96
1.2.6.1.5. Shell membranes thickness	96
1.2.6.1.6. Breaking strength with Quasi Static Compression	(QSC). 97
1.2.6.2. Internal egg quality	97
1.2.6.2.1. Yolk quality measurements	97
1.2.6.2.1.1. Yolk weight	97
1.2.6.2.1.2. Yolk index	98
1.2.6.2.2. Albumen quality measurements	98
1.2.6.2.2.1. Albumen weight	98
1.2.6.2.2.2. Haugh unit (HU)	98
1.3. Blood parameters	99
1.4. Immunocompetence measurements	100
1.4.1. Relative lymphoid organs weight	100
1.4.2. Phytohemagglutinin-P injection (In vivo ce immunity assay).	

1.4.3.	Antibody response against sheep red blood cells	
	(SRBCs)	101
1.4.4.	Carbon clearance (mononuclear phagocytic system	
	function assay)	102
1.5.	Scanning Electron Microscopy (SEM) technique	102
1.5.1.	Preparation of samples for ultrastructural analysis using	
	(SEM)	102
2.	Statistical analysis	104
3.	Gene effect	104
VII	RESULTS AND DISCUSSION	105
1.	Incubation measurements	105
1.1.	Fertility and hatchability	105
1.2.	Water loss from egg during incubation	109
1.3.	Chick yield weight and percentage	112
2.	Phenotypic characters	115
2.1.	Body weight	115
2.2.	Body weight gain	118
2.3.	Feed consumption and feed conversion ratio	121
2.3.1.	Feed consumption and feed conversion ratio for growing	
	birds	121
2.3.2.	Feed consumption and feed conversion ratio for laying	
	birds	124
2.4.	Carcass measurements	126
2.4.1.	Carcass measurements at 12 week of age	126

VII

2.4.2.	Carcass measurements at 16 week of age	129
2.4.2.1.	Inedible parts	129
2.4.2.2.	Edible parts	132
2.5.	Relative abdominal fat	135
2.6.	Sexual maturity measurements	137
2.7.	Egg production measurements	142
2.8.	Egg quality measurements	146
2.8.1.	Egg quality at 35 week of age	146
2.8.1.1.	External egg quality	146
2.8.1.2.	Internal egg quality	149
2.8.2.	Egg quality at 47 week of age	152
2.8.2.1.	External egg quality	152
2.8.2.2.	Internal egg quality	155
3.	Blood parameters	158
4.	Immunocompetence measurements	163
4.1.	Relative lymphoid organs	163
4.1.1.	Relative lymphoid organs weight at 12 week of age	163
4.1.2.	Relative lymphoid organs weight at 16 week of age	166
4.2.	In vivo cell-mediated immunity assay	168
4.2.1.	PHA-P injection in toe web	168
4.2.2.	PHA-P injection in wattle	171
4.3.	Antibody response against sheep red blood cells	174

VIII

4.4.	Carbon clearance (mononuclear phagocytic system
	function assay)
5.	Eggshell ultrastructure (vertical and horizontal sections) 18
VIII	SUMMARY AND CONCLUSION 19
IX	REFERENCES
X	ARABIC SUMMARY

Table	LIST OF TABLES	Page
No.		90
1	Number of chicks produced for each sex within genotype	84
2	The composition and calculated chemical analysis of the	
	experimental diets.	87
3	Fertility and hatchability percentage as affected by naked	
	neck, frizzle and naked neck-frizzle genes	107
4	Water loss (%) from egg during the incubation periods of	
	naked neck-frizzle, naked neck, frizzle and normal	
	feathering genotypes	110
5	Chick yield percentage to Incubated egg weight of naked	
	neck-frizzle, naked neck, frizzle and normal feathering	
	genotypes	113
6	Body weight of birds as affected by naked neck (Na),	
	frizzled (F) and double segregation genes	117
7	Body weight gain of birds as affected by naked neck (Na),	
	frizzled (F) and double segregation genes	120
8	Feed consumption and feed conversion ratio of growing	
	birds as affected by naked neck (Na), frizzled (F) and	
	double segregation genes	123
9	Feed consumption and feed conversion ratio of laying hens	
	at the age between 30 and 36 week as affected by naked	
	neck (Na), frizzled (F) and double segregation genes	125
10	Body weight and carcass characteristics in males (at 12	
	week) of naked neck, frizzled, naked neck-frizzled and	
	normally feathered chicken genotypes	128