

ROLE OF PET/CT IN THE EVALUATION OF SOLITARY PULMONARY NODULE

Essay Submitted for partial fulfillment of Master degree of Radiodiagnosis

By

Ahmad Salah Al-Din Mohammad

M.B., B.Ch.

Supervised By

Prof. Dr. Wahid Hussein Tantawy

Professor of Radio-diagnosis Faculty of Medicine Ain Shams University

Dr. Rania Mohammed Refaat Abd El Hamid

Lecturer of Radio-diagnosis Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2013

Table of Contents

	Title	Page
1	Chapter I: Introduction and aim of the work.	1-2
2	Chapter II : Anatomical Considerations.	3-24
3	Chapter III: Pathology of solitary pulmonary nodule.	25-34
4	Chapter IV: PET/CT principles and technical	35-49
	considerations.	
5	Chapter V : PET/CT findings in solitary pulmonary	50-94
	nodule.	
6	Summary and conclusion.	95-96
7	References.	97-108
8	Arabic Summary.	

List of Abbreviations

F18-(FDG)	F18-fluoro-deoxyglucose
BAC	Bronchioloalveolar cell carcinoma
CT	Computed tomography
CTA	CT angiography
GLUT	Glucose transporters
HU	Hounsfield units
KCC	Kulchitsky cell cancers
LCNEC	Large cell neuroendocrine carcinoma
MIP	Maximum intensity projection
NSCLC	Non-small-cell lung cancer
PAVM	Pulmonary arteriovenous malformations
PET	Positron emission tomography
PMTs	Photomultiplier tubes
PS	Pulmonary sequestration
SCLC	Small-cell lung carcinoma
SPN	Solitary pulmonary nodule
SUV	Standardized uptake value
TB	Tuberculosis
WG	Wegener granulomatosis

List of Figures

Figure	Title	Page
1	Lung surfaces	3
2	Fissures of the lungs	4
3	Anterior view of bronchopulmonary segments	5
	of the lungs	
4	Posterior view of bronchopulmonary segments	6
	of the lungs	
5	Pulmonary vessels	8
6	The bronchial tree	10
7	Lymph nodes related to trachea and main bronchi	12
8	Normal appearance of CT Chest, Lung	14
	window	
9	CT Chest, Lung window showing lung fissures	15
10	CT Chest with contrast showing main bronchi	16
	and pulmonary arteries	
11	CT Chest, lung window, through lung apex	17
12	CT Chest, lung window, through aortic arch	18
13	CT Chest, lung window, just below carina	19
14	CT Chest, lung window, through left atrium	20
15	CT Chest, lung window, at a lower level	21
16	Normal F18-FDG-PET whole body scan	22
17	PET/CT image consisting of coronal whole body CT image, PET image with CT attenuation correction and fused image showing the normal myocardial and urinary bladder activity	22
18	CT image, PET image with CT attenuation correction and fused image showing the normal vocal cords with symmetric uptake. This patient talked during the uptake phase of the study	23
19	CT image, PET image with CT attenuation correction and fused image showing the normal uptake in the tip of the tongue and oral mucosa	23

20	(A) CT image, (B) PET image with CT	24
	attenuation correction and (C) fused image	
	showing the appearance of the normal lung	
	which is relatively photopenic	
21	Coronal fused F18-FDG PET–CT image of the	24
	back shows bilateral, diffuse, symmetric	
	moderate hypermetabolism in the paraspinal	
	muscles (arrows) which is consistent with	
	physiologic muscle activity	
22	Annihilation reaction. Positrons (β^+), electrons	36
	(β) , photons (γ) , scintillation crystals (blue	
	rectangles), neutrons (N) and protons (P)	
23	Uptake of F18-FDG. Glucose transporters	37
	(Glut), F18-FDG-6-phosphate and nucleus (N)	
24	Photograph of a hybrid PET-CT scanner shows	38
	the PET ring detector system. There are up to	
	250 block detectors in the ring. Drawing shows	
	a detector block with 8 x 8 smaller scintillation	
	crystals linked to four photomultiplier tubes	
	(blue circles)	
25	Photograph of a hybrid PET-CT scanner,	39
	Gemini (Philips Medical), shows the PET and	
	CT components only	
26	Typical scout image obtained during an F18-	42
	FDG PET–CT study. The blue-purple	
	rectangle represents CT coverage during the	
	study and each overlapping green rectangle	
	represents PET coverage	
27	Display screen of the software platform shows	43
	fused PET-CT images in the sagittal, coronal	
I	Land avial planes of a nationt	
	and axial planes of a patient	
28	Axial fused F18-FDG PET-CT image in a	45
28	Axial fused F18-FDG PET-CT image in a patient with carcinoma of the left breast shows	45
28	Axial fused F18-FDG PET-CT image in a patient with carcinoma of the left breast shows a lymph node in the left axilla. Focal	45
28	Axial fused F18-FDG PET-CT image in a patient with carcinoma of the left breast shows a lymph node in the left axilla. Focal hypermetabolism in the node appears lateral to	45
28	Axial fused F18-FDG PET-CT image in a patient with carcinoma of the left breast shows a lymph node in the left axilla. Focal hypermetabolism in the node appears lateral to its expected location in the axilla and overlies	45
28	Axial fused F18-FDG PET-CT image in a patient with carcinoma of the left breast shows a lymph node in the left axilla. Focal hypermetabolism in the node appears lateral to	45

29	Curvilinear cold artifact (arrow) is commonly seen on dome of diaphragm/liver or at lung base because of respiration mismatch on PET	46
	images with CT attenuation correction	
30	(A) PET/CT coronal image in a 58 years old man with colon cancer displaying a lesion at dome of liver that is mislocalized to right lung (arrow) because of respiratory motion. (B) PET/CT coronal image without attenuation correction shows that all lesions are confined to liver	47
31	(A) High density metallic implants generate streaking artifacts and high CT numbers (arrow) on CT image. (B) High CT numbers will then be mapped to high PET attenuation coefficients, leading to overestimation of activity concentration. (C) PET images without attenuation correction help to rule out metal induced artifacts	48
32	(A) Computed tomography morphological data are combined with (B) the [18F]-FDG-PET metabolic data to obtain (C) a PET-CT fusion image which allows location and characterisation of the solitary pulmonary nodule	51
33	(A) Example of the segmentation of computed tomography images and application of the three-dimensional automatic segmentation post-processing software. (B) Solitary pulmonary nodule showing a 36% dimensional increase in 68 days when compared with (C) the previous findings. The calculated doubling time is 154 days suggesting a neoplasm. (D) The fused PET/CT image locates with extreme precision the area of metabolic hyperactivity at site of the pulmonary nodule with a standardized uptake value > 2.5. It was proved	55
1	to be pulmonary carcinoma	

24	TI 1 C ODIT 1	E /
34	Volumetric evaluation of an SPN demonstrated	56
	the stability of the nodule after 126 days. The	
	PET/CT image doesn't show metabolic	
	activity at the site of the nodule. It was a	
25	benign nodule	
35	Pulmonary carcinoma. A direct relationship	56
	exists between the densiometric increase	
	observed at the site of the solitary pulmonary	
	nodule (A) after contrast administration (56	
	HU), compared to (B) the basal CT	
	examination (10 HU) and (C) the	
2.5	corresponding SUV data (12.4) at PET-CT	=0
36	CT chest images in a lung window settings	58
	showing findings of tuberculomas. They can	
	manifest as (A) a solitary, well-defined nodule	
	with spiculated margins or as (B) a nodule	
25	with satellite lesions	70
37	Chest CT scan showing a 1 cm right upper	59
	lobe nodule. Histopathology revealed	
20	histoplasmosis	50
38	Adenocarcinoma in an asymptomatic 64-year-	59
	old man. Unenhanced chest CT demonstrates a	
	1 cm lobular right upper lobe solitary nodule	
39	and mild centrilobular emphysema	60
39	Chest CT shows a 2.3 x 1.8 cm sized round	UU
	mass with internal necrosis in the right middle	
	lobe (arrowed) with right pleural effusion.	
40	Pathology proved lung adenocarcinoma	61
40	Unenhanced chest CT in a lung window	UΙ
	settings demonstrates an irregular right upper	
	lobe nodule of heterogeneous attenuation with	
	intrinsic air bronchiolograms. It was proved to	
41	be bronchioloalveolar carcinoma	62
41	76-year-old man with squamous cell	U2
	carcinoma resected from anterior left upper	
	lobe. Nodule was positive on PET. Axial CT	
	images show irregularly shaped nodule with	
	clustering (arrowed)	

40	CI II I	
42	Chest X-Ray and a contrast-enhanced CT scan	63
	of the chest show mass in the left hilar region	
	(arrowed). The patient subsequently underwent	
	a bronchoscopy for biopsy which revealed	
	poorly differentiated carcinoma, possibly	
	intermediate type of small cell carcinoma	
43	(A) Axial CT scan, obtained at the level of the	64
	right middle lobar bronchus, shows a 13-mm-	
	diameter nodule (arrow) in the superior	
	segmental bronchus of the right lower lobe	
	with distal mucus plugging (arrowheads). (B)	
	Same image displayed with a mediastinal	
	window shows significant enhancement of the	
	endobronchial nodule (arrow). It was proved to	
	be a typical carcinoid	
44	(A) On chest X-ray a prominent right hilum	65
	and a subtle increase in parenchymal density	
	(arrowed) in the right infrahilar region was	
	noted, a mass could not be clearly identified,	
	however. (B) A non contrast-enhanced CT	
	scan of the chest revealed a mass within the	
	bronchus intermedius (arrow) consisting	
	mostly of fat with minimal inclusions of soft	
	tissue density (Ao: Ascending aorta; TP:	
	pulmonary trunk; LA: left atrium). The lesion	
	is proved to be a hamartoma	
45	(A) Chest X-ray shows a partly calcified	66
	solitary pulmonary nodule in the right perihilar	
	location (arrowed). (B) CT scan reveals a	
	lobulated lesion with "popcorn calcification"	
	and areas of fat attenuation within it (better	
	seen on zoomed inset image). The findings are	
	consistent with pulmonary hamartoma	
46	CT chest in a lung window settings through the	67
	lower lobes in a 50-year-old woman with	
	metastatic papillary carcinoma of the thyroid	
	shows multiple smooth nodules, reflecting	
	hematogenous pulmonary metastases	
	nomatogenous parmonary metastases	

47	CT Chest in a lung window settings showing	68
	two PAVMs (arrowed). Note the visibility of	
	the efferent vessels (arrowhead)	
48	(A) CT chest in a lung window settings shows	69
	a nodule was located at the major fissure in the	
	right upper lobe and measured approximately 2	
	cm with spiculated borders (arrow) which was	
	particularly concerning for malignancy. (B)	
	One month later, repeat unenhanced CT scan	
	of the thorax demonstrated interval decrease in	
	the size (1.3 cm) of the right upper lobe nodule	
	(arrow). New pulmonary nodules were	
	identified in the right lower lobe and the right	
	upper lobe. The nodule proved to be the result	
	of bronchiolitis obliterans organizing	
	pneumonia at histopathologic examination	
49	(A) PET component of a PET/CT study	70
	showing an area of intense metabolic activity	
	simulating lung malignancy. (B) CT	
	component of a PET/CT study showing that	
	the lesion is approximately -50 Hounsfield	
	units, consistent with lipoid pneumonia	
50	Axial fused images of a PET/CT scan.	70
	Multiple cavitating pulmonary nodules, proved	
	to be Wegener granulomatosis	
51	(A) Axial CT chest with contrast in a lung	71
	window settings, revealed a well-defined SPN	
	in the right upper lobe of 7.2 mm. (B) Axial	
	MDCT image in a mediastinal window settings	
	showing only an isolated right hilar lymph	
	node of 8.3 mm is seen. Yet, lymphadenopathy	
	were not observed. (C) The PET image	
	showed two pathological deposits with low	
	spatial resolution. (D) Fusion PET-CT image	
	allows a better characterization of the findings,	
	and confirmed that the deposits corresponded	
	to the nodule and the lymph node. This is	
	consistent with adenocarcinoma of the lung	

52	(A) PET component of PET/CT study showing intense metabolic activity at right hilar region and a small less intense activity at right adrenal anatomical site. (B) Abdominal CT component of PET/CT study displaying an enlarged right adrenal gland. (C) Fused image of the PET/CT study locates the metabolic hyperactivity along the enlarged right suprarenal gland. This is consistent with right hilar mass with right adrenal metastases	72
53	(A) PET component of PET/CT study showing areas of increased metabolic activity at the right lower lung lobe and at the right inferolateral aspect of the liver. (B) CT of lower chest showing a pulmonary nodule in the right lower lung lobe. (C) CT abdomen showing a hypodense hepatic focal lesion at the posterior segment of the right hepatic lobe. (D) & (E) PET/CT fused images accurately localizing the sites of increased metabolic activity seen in PET component to the lung nodule and hepatic focal lesion seen by CT. The case was proved to be a right lung primary with a liver secondary deposit	73
54	CT chest image in a lung window settings shows a dominant solid nodule with clustering with irregular shape and non-spiculated margins at the posterior right upper lung lobe. This nodule was positive on PET. Histological examination revealed granuloma	76
55	(A) & (B) Coronal & axial images of PET component of a PET/CT study showing two areas of increased metabolic activity at both lungs. (C) CT component of a PET/CT study showing two pulmonary nodules. (D) PET/CT fused image locates the increased metabolic activity at the two pulmonary nodules. The histological diagnosis is pulmonary sarcoidosis	76

	T= 4	
56	Radiation induced fibrosis in a 61-year-old	77
	male by radiation therapy due to lung cancer.	
	(A) Axial CT scan shows consolidation in the	
	left lower lobe, suggesting lung cancer	
	recurrence. (B) Axial PET image shows	
	increased uptake in the left lower lobe (arrow)	
	which was mistaken for lung cancer	
	recurrence. Microscopic examination revealed	
	severe fibrosis with inflammatory cell	
	accumulation	
57	(A) Axial MDCT chest with contrast showing	78
	a lesion in the left upper lobe parahilar region	
	with atelectasis of the lobe (asterisk). The left	
	pulmonary artery (solid arrow) is markedly	
	attenuated in caliber. Because atelectasis, it	
	was difficult to assess the true extent of the	
	tumor. (B) Fused PET-CT image showed a	
	clearly abnormal hypermetabolic focus	
	(asterisk) with high SUV of up to 18. This	
	finding could determine the boundaries and	
	size of the tumor and differentiate obstructive	
	atelectasis. It also showed a region of lower	
	activity being anterolateral to the mass	
	(arrowhead) suggesting an outbreak of	
	pneumonitis within atelectasis. This case was	
	proved to be a poorly differentiated squamous	
	cell carcinoma of lung	
58	An example of a central tumor with distal	79
	collapse, the margins of which can't be clearly	
	separated on CT alone. Fused PET/CT image	
	clearly shows the central active tumor and the	
	distal collapsed lung allowing a limited	
	radiation port and thus sparing normal tissues	
59	Case 1: Tuberculoma	81
60	Case 2: Infiltrating moderately differentiated	82
	adenocarcinoma	
61	Case 3: Mycetoma	84
62	Case 4: squamous cell carcinoma	85

🕏 List of figures

63	Case 5: bronchioloalveolar carcinoma	87
64	Case 6: carcinoid tumor	88
65	Case 7: metastasizing non small cell lung cancer	89
66	Case 8: metastasizing non small cell lung cancer	90
67	Case 9: Wegener granulomatosis	92
68	Case 10: Role of PET/CT in evaluating therapeutic response	94

List of Tables

Table	Title	Page
1	Main bronchopulmonary segments.	6
2	SPN imaging characteristics favoring	50
	benignancy or malignancy.	
3	Threshold values in differential diagnosis	57
	between benign and malignant lesions.	

Acknowledgement

First, thanks are all due to **Allah** for blessing this work until it has reached its end as a part of his generous help throughout my life.

I wish to express my thanks and profound gratitude to **Prof. Dr. Wahid Hussein Tantawy**, Professor of Radio-diagnosis, Ain Shams University, who I am deeply indebted for his valuable supervision of this work. Also thanks to **Dr. Rania Mohammed Refaat Abd El Hamid**, Lecturer of Radio-diagnosis, Ain Shams University for supervising and reviewing this work till it reached its final edition.

Also, I would like to thank **Dr. Khaled Taalab** and **Dr. Hesham Al-Ghazaly** for their valuable additions and updates.

Finally, I would like to express my deepest gratitude to all **my family and to my wife**, who has all supported me during my study.

Introduction and Aim of the Work

Solitary pulmonary nodule (SPN) is typically defined as an intraparenchymal focal, round or oval area of increased opacity < 3 cm in diameter (*Khouri et al.*, 1987) & (Viggiano et al., 1992).

Nearly 1 in every 500 chest radiographs taken reveals a newly diagnosed SPN. This estimate is mainly based on chest radiographs. Now, with increasing use of computed tomography (CT) of the chest for screening of lung cancer and chest CT angiography (CTA) for diagnosing pulmonary embolus and for cardiac evaluation, this number is rapidly increasing (*Neyman et al.*, 2006).

The differential diagnoses of a solitary pulmonary nodule are broad and management depends on whether the lesion is benign or malignant. PET-CT findings can help to differentiate between benign and malignant nodules (*Swensen et al.*, 2005).

Imaging continues to play a major role in the management of oncologic patients. Most imaging modalities yield purely anatomic and morphologic tumor detail without addressing tumor metabolism. The advent of positron emission tomography (PET) with F18- fluoro-deoxyglucose (FDG) has provided tumor-related qualitative and quantitative metabolic information critical to patient diagnosis and management. PET enables the detection of increased metabolic activity in tissue that can appear morphologically normal on other imaging modalities. It can also assist in the differentiation of benign from malignant lesions and in the imaging follow-up of cancer patients following surgery, radiation, or chemotherapy (Rohren et al., 2004) & (Kostakoglu et al., 2003) & (Kluetz et al., 2000).

PET, however, is limited by relatively poor spatial resolution, whereby accurate anatomic localization of foci of increased metabolic activity may be difficult or impossible.