ROLE OF MAGNETIC RESONANCE DIFFUSION TRACTOGRAPHY IN INTRAAXIAL BRAIN TUMORS

Essay

Submitted for Partial Fulfillment of Master Degree In Radio-diagnosis

By

Ali Ahmed Abd El Mohsen Attia

M.B., B.CH Ain Shams University

Supervised by

Prof. Dr.\Mounir Sobhy Guirguis

Professor of Radiodiagnosis Faculty of medicine – Ain Shams University

Dr.\Waleed Mohammed Abd El Hamid Hetta

Lecturer of Radiodiagnosis
Faculty of medicine – Ain Shams University

Faculty of Medicine Ain Shams University

2012

In the name of **Allah**, the Most Gracious, the Most Merciful. All the praises and thanks to ALLAH for making this work possible.

I am deeply and forever indebted to **Professor Dr.**, **Mounir Sobhy.** I sincerely appreciate his endless guidance and encouragement. It has been a privilege to be taught and guided by such a supportive and patient supervisor. His truly instinctive knowledge had inspired and enriched my work and research.

My sincere thanks to, **Dr. WALEED HETTA** for his continuous guidance and support.

My thanks and my love to all my professors and colleagues for their support.

Last but not least; I would like to thank my family for their endless love and support

Thanks

I would like to dedicate this Essay to my Wife and my Son; to them I will never find adequate words to express my gratitude.

LIST OF CONTENTS

Title	Page
Introduction	1
Aim of work	3
Anatomical Aspects	4
Neuropathophysiology	28
Physical considerations	38
Technique for using 3D MRI tractography	46
Role of magnetic resonance tractography in as	ssessment of
patients with intra-axial brain tumors	54
Illustrative Cases	74
Summary and conclusion	88
References	90
Arabic summary	

List of abbreviations

1H-MRSI Proton MR spectroscopic imaging

3D 3-Dimensional

ADC Apparent Diffusion Coefficient

ALIC Anterior Limb Of The Internal Capsule

BOLD Blood Oxygen Level Dependent

C caudate nucleusCC Corpus Callosum

cg Cingulum Cho choline

CNS Central Nervous System
CPC Choroid Plexus Carcinoma
CPP Choroid Plexus Papilloma
CPT Choroid Plexus Tumors
CSF Cerebrospinal Fluid
cst Corticospinal Tract

CT Computerized Tomography

DT Diffusion Tensor

DNET dysembryoplastic neuroepithelial tumour

DTI Diffusion Tensor Imaging

DTI-FT DTI Fiber Tracking

DTT Diffusion Tensor Tractography

DW Diffusion Weighted

DWI / PWI diffusion/perfusion weighted image

e ADC enhanced Apparent Diffusion Coefficient

EPI Echo Planar Imaging **FA** Fractional Anisotropy

FACT Fibre Assignment by Continuous Tracking

fMRI Functional MR Imaging

fx Fornix

IC Internal Capsule

icp Inferior Cerebellar Peduncle

ifo Inferior Fronto-Occipital Fasciculusilf Inferior Longitudinal Fasciculus

iMRI Intraoperative MR ImagingLGN Lateral Geniculate Nucleusmcp Middle Cerebellar Peduncle

ml Medial LemniscusMR Magnetic Resonance

MRI Magnetic Resonance ImagingMRS MR spectroscopy imaging

MS Multiple Sclerosis

NAA N-acetylaspartate OR Optic Radiation
PLIC Posterior Limb of the Internal Capsule

PMAs Primary Motor Areas

PROPELLER Periodically Rotated Overlapping Parallel Lines

with Enhanced Reconstruction

ROI Regions of Interest

RT Radiotherapy

scp Superior Cerebellar Peduncle

sfo Superior Frontooccipital Fasciculusslf Superior Longitudinal Fasciculus

SNR Signal-To-Noise Ratio
SRT Stereotactic Radiotherapy

st Stria TerminalisT2WI T2 Weighted Imageunc Uncinate Fasciculus

WHO World Health Organization

WM White Matter

WMT White Matter Tractography

LIST OF TABLES

Table No.	Page
Table (1):	A simplified version of the WHO classification32
Table (2):	A list of brain tumours divided according to
	infiltrative or circumscribed pattern of growth37

List of Figures

Figure No.	Title Page
Figure (1):	Lateral view of the left side of the brain5
Figure (2):	MRI axial T1 at level basal ganglia7
Figure (3):	Schematic diagram of projection fibers9
Figure (4):	Relationship between various nomenclatures of white matter tracts in the internal capsule
Figure (5):	Corticospinal tract
Figure (6):	3D reconstruction results of the projection fibers
Figure (7):	Association fibers in sagittal view13
Figure (8):	Association Fibers coronal view14
Figure (9):	Directional map for Cingulum and other association fibres
Figure (10):	The trajectory of the superior longitudinal fasciculus and its identification in the color maps
Figure (11):	The trajectory of the inferior longitudinal fasciculus and its identification in color maps

Figure No.	Title	Page
Figure (12):	The trajectory of the inferior fronto- occipital fasciculus and its identification in color maps	19
Figure (13):	The trajectory of the uncinate fasciculus and its identification in color maps	20
Figure (14):	The trajectory of the superior fronto- occipital fasciculus and its identification in color maps	21
Figure (15):	Trajectories of the cingulum (green) and fornix / stria terminalis	24
Figure (16):	3D reconstruction results of commissural fibers	26
Figure (17):	Trajectories of the corpus callosum (magenta) and tapetum (peach) and their identification in color maps	27
Figure (18):	Colour-coded anisotropy axial DTI maps at the level of the posterior limb of the internal capsule	35
Figure (19):	Example for complete tract disruption	36
Figure (20):	Line diagram demonstrating the concept of isotropic diffusion	40

Figure No.	Title	Page
Figure (21):	FA maps showing various fiber tracts	42
Figure (22):	Directionally encoded color maps show	
	the anatomy of the various tracts	43
Figure (23):	Different image types used in DTI	45
Figure (24):	Schematic illustration of an ROI setting for sensory and pyramidal Tractography	47
Figure (25):	Schematic illustrations of sensorimotor tracts at four levels of the brain	48
Figure (26):	Propagation of a fiber in a vector field	49
Figure (27):	Principles of tract reconstruction using the "from ROI" and the "brute-force" approaches	50
Figure (28):	Schematic diagram of FACT fiber tract reconstruction based on DTI data	51
Figure (29):	Fiber reconstruction with a line propagation algorithm	52
Figure (30):	Pattern of main fiber tract involvement: displaced.	56
Figure (31):	Tract displacement. Left parietooccipital AVM.	58
Figure (32):	Tract displacement	59

Figure No.	Title	Page
Figure (33):	Pattern of main fiber tract involvement:	
Figure (34):	Pattern of main fiber tract involvement	61
Figure (35):	Complete tract disruption	62
Figure (36):	Pattern of main fiber tract involvement	63
Figure (37):	Pattern of main fiber tract involvement	64
Figure (38):	Patterns of Main Fiber Tract Involvement By Tumor	
Figure (39):	Patient with Grade 3 oligoastrocytoma	72
Figure (40):	Patient with Grade 4 glioblastoma multiforme	
Figure (41):	Patient with Grade 2 oligodendroglioma	73
Figure (42):	axial and sagittal MRI sequences in 83- year-old woman with right limb weakness.	ı
Figure (43):	Tractography images show the interrupted fibers around the tumor	:
Figure (44):	White matter tracts affected by a tumor situated in the left basal nuclei	
Figure (45):	Tractograms of the corticospinal tracts	78

Figure No.	Title	Page
Figure (46):	Pre- (A) and postoperative (B and C) tractograms of the inferior fronto-occipital fasciculi	79
Figure (47):	axial MRI sequences and tractogram in a 16-year-old boy presented with seizures	
Figure (48):	Tractograms of the projection fibers and corona radiata pre- and postoperatively	83
Figure (49):	Pre- and postoperative tractograms of the ipsilateral superior longitudinal fasciculus.	84
Figure (50):	axial images showing focal mass lesion in the region of right corona radiata	85
Figure (51):	FA and color coded map showing the effect of the mass on the adjacent WMT	86
Figure (52):	WMT reconstruction of projection fibers of the internal capsule and corona radiata	

Introduction

Magnetic resonance tractography (MRT) is a valuable, noninvasive imaging tool for studying human brain anatomy and, as MRT methods and technologies advance, has the potential to yield new and illuminating information on brain activity and connectivity. (*Saad and Heidi*, 2011).

MRI diffusion tensor tractography, allows visualization of white matter tracts in vivo and to study white matter integrity. Virtual dissection of the living human brain can be used to visualize white matter bundles with relationship to intra axial brain tumors (*Aoki et al, 2007*).

The goal of surgical treatment is to remove as much tumor tissue as possible, while in the same time preserving the integrity of functionally gray and white matter structures, and thus avoids postoperative neurologic deficits. However, tumor infiltration of cortical areas and/or white matter tracts may preclude safe gross total resection. Consequently, knowledge of the relationship between tumor and cortical and white matter regions is helpful for preoperatively determining the extent to which a brain tumor can be surgically removed, and also for guiding the actual surgical procedure (*Talos et al.*, 2007).

Identifying the location of the motor pathways has been much more challenging. Extensive white matter infiltration by primary brain tumors is a common occurrence (*Talos et al.*, 2007). Moreover, resecting brain tumors involves the risk of

☐ Introduction and Aim of the Work

damaging the descending motor pathway. Diffusion tensor (DT)-imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that help to visualize the white matter fibers such as corticospinal (pyramidal) tract, optic radiation and arcuate fasciculus with relationship to brain tumors and can delineate the subcortical course of the motor pathway (*Berman et al.*, 2007).

Postoperatively, DTI is used to assess surgical outcome. White matter tractography (WMT) alteration patterns including deviation, deformation, infiltration, and apparent tract interruption are examined postoperatively. (*Lazer et al.*, 2006).