Effect of HCV infection on graft Outcome in renal transplant recipients

Thesis
Submitted for partial fulfillment Of Master degree
in Internal Medicine

By

Anas Hassan Hassan

M.B.B.CH – Ain Shams University

Under Supervision Of

Prof. Dr. Adel Mohammed Afifi

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Prof. Dr. Emam Abd El latif Waked

Professor of Internal Medicine and Nephrology Theodor Bilharz Research Institute

Dr. Ahmed Shaban Badawy

Lecturer of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Acknowledgement

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Adel Mohammed AFIFI,** Professor of Internal Medicine and Nephrology, Faculty of Medicine-Ain Shams University for his meticulous supervision, for his kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Emam Abd El latif Waked,** professor of internal medicine and nephrology, Theodor Bilharz Research Institute for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Ahmed Shaban Badawy** lecturer of Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University for his great help, outstanding support, active participation and guidance.

My deepest thanks are also to **Prof. Dr. Essam** Professor Internal Medicine Khedr of and. Medicine-Nephrology, Faculty of Ain Shams University and all medical staff department of nephrology, Naser Institute for their kind help during the practical part of the work.

Lastly, I want to thank all my staff, my colleagues and my patients without their help this work could not have been completed, special thanks to my family, my wife, my son Hassan.

Anas Hassan

List of Contents

Subject Page No.
Introduction1
Aim of the work2
Review of literature:
▶ Chapter (1): Renal transplantation3
► Chapter (2): HCV overview36
► Chapter (3): HCV& Chronic kidney disease43
► Chapter (4): HCV & Renal transplantation52
Patients & methods86
Results88
Discussion 105
Summary & conclusion113
Recommendation116
Appendix118
References 125
Arabic summary

List of Tables

Table	e Title I		
No.			
Tables	of Review		
1	Classification of stages of chronic kidney disease	4	
2	Some causes of Proteinuria after Kidney Transplantation	60	
3	Renal lesions associated with HCV infection	61	
4	Clinical, histologic, and immunologic characteristics of published cases of renal diseases associated with hepatitis C infection after renal transplantation	64	
5	Summary of reports of INF monotherapy and INF and ribavirin in HCV +ve renal transplant recipients 79		
6	Effect of antiviral drugs in HCV +ve renal transplant recipients 85		
Tables	of Results		
1	Comparison between demographic data in group A&B	89	
2	Comparison between history of shistosomiasis in group A&B	90	
3	Comparison between Basal Serologic status of CMV IgM& CMV IgG in group A&B	91	
4	Comparison between causes of original kidney disease in group A &B	92	

5	Comparison between Duration of dialysis before transplantation in group A&B	94
6	Comparison between times (in units) Pre &Post- transplant blood transfusion in group A&B	95
7	Comparison between proteinuria in urine analysis before & after transplantation in group A&B	96
8	Comparison between Pre& Post-transplantation quantitative 24hs urinary proteins in the group A&B	97
9	Comparison between occurrence of acute rejection within first year after transplantation in group A&B	98
10	Comparison of the maintenance immuno- suppressive among the two studied groups	99
11	Comparison between Number of grafts in group A&B	101
12	Comparison between occurrence of operative complication in group A&B	102

List of Figures

Figure No.	Title		
Figures	Figures of review		
1	Decline of functional status associated with institution of dialysis, recovery, and then decline associated with transplantation in comparison to preemptive transplantation.		
2	Time of presentation of common viral illness post transplantation		
3	HCV viral component	36	
4	Histopathologicl lesions associated with HCV infection		
5	Suggested algorithm for evaluation and treatment of anti– hepatitis C virus (anti-HCV)-positive patients who are under consideration for kidney transplantation	57	
6	Illustration of the pathogenic mechanisms that lead to transplant-associated hyperglycaemia (TAH) in kidney recipients		
Figures of Results			
1	Comparison between causes of original kidney disease in group A &B	93	

List of Abbreviations

ADA	American Diabetic Association		
AIDS	Acquired immunodeficiency syndrome		
ALG	Antilymphocyte Globulin		
ALT	Alanine Transaminase		
AST	Aspartate Aminotransferase		
ATN	Acute Tubular Necrosis		
AZA	Azathioprine		
BMI	Body Mass Index		
BUN	Blood urea nitrogen		
C	Complement		
CAI	Chronic Allograft Injury		
CBC	Complete Blood Count		
CD	Cluster of Differentiation		
CKD	Chronic kidney disease		
CMV	Cytomegalovirus		
CNI	Calcineurin Inhibitor		
CRP	C-reactive protien		
CsA	Cyclosporine A		
DGF	Delayed Graft Function		
DM	Diabetes Mellitus		
DPP IV	Dipeptidyl peptidase IV		
EBV	Epstien barr virus		
EIA	Enzyme immunoassay		

ESRD	End stage renal disease		
FSGS	Focal Segmental Glomerulosclerosis		
GFR	Glomerular Filtration Rate		
GLP	Glucagon like peptide		
GN	Glomerulonephritis		
HD	Hemodialysis		
HAART	Highly active antiretroviral therapy		
HBV	Hepatitis B Virus		
HCV	Hepatitis C Virus		
HHV6	Human herpes virus 6		
HHV7	Human herpes virus 7		
HHV8	Human herpes virus 8		
HIV	Human immunodeficiency virus		
HLA	Human Leukocyte Antigen		
HMPV	Human metapneumonia virus		
HSV	Herpes simplex virus		
HTLV-1	Human t lymphotropic virus -1		
HTN	Hypertension		
HUS	Hemolytic Uremic Syndrome		
IFG	Impaired fasting glucose		
Ig	Immunoglobulin		
IGT	Impaired glucose tolerance		
IL-8	Interleukin-8		
INFα	Interferon alpha		

KDIGO	Kidney Disease: Improving Global Outcomes		
KDOQI	Kidney Disease Outcomes Quality Initiative		
KS	Kaposi sarcoma		
LCM	Laser capture microdissection		
LDH	Lactic dehydrogenase		
MALT	Mucosa associated lymphoma tumors		
MMF	Mycophenolate Mofetil		
MPGN	Membranoproliferative GN		
mTOR	Mammalian Target of Rapamycin		
MU	Million units		
NIH	National institutes of health		
NKF	National Kidney Foundation		
NODM	New onset diabetis mellitus		
OKT3	Orthoclone (muromonab-CD3) (anti–T-cell antibody)		
PCR	Polymerase Chain Reaction		
PKD	Polycystic kidney Disease		
PLT	Platelets		
PPD	Purified protein derivative		
PTDM	Post Transplantation Diabetes Mellitus		
PTLD	Post transplantation lympho- proliferative disorders		
RIBA	Recombinant immunoblot assay		
RPR	Rapid plasma reagent		
RRT	Renal replacement therapy		

RSV	Respiratory syncytial virus		
SLE	Systemic lupus Erythematosus		
SRL	Sirolimus		
SVR	Sustained virological response		
TAH	Transplant associated hyperglycemia		
TMA	Thrombotic Microangiopathy		
TNFα	Tumor necrosis factor alpha		
TZDs	Thiazolidinediones		
USRDS	United states renal data system		
VCAM-1	Vascular cell adhesion molecule-1		
VZV	Varicella zoster virus		
WBCs	White Blood Cells		
WHO	World Health Organization.		
WNV	West Nile virus		

Introduction

Renal transplantation is one of the spectacular success stories in medicine during the 20th century. In fact, the advances in renal transplantation have advanced this modality to be the treatment of choice for end stage renal disease (ESRD) (**Doyle et al., 2004**).

Hemodialysis patients represent a high-risk group for hepatitis C virus (HCV) infection, possibly due to direct or indirect exposure to contaminated blood, beside the fact that HCV infection itself may be transmitted through transplantation (Morales et al., 2004).

HCV infection is not only a clinical problem in kidney transplant patients but also a cause of renal disease and vasculitis (**Bruchfeld**, 2003).

HCV is currently the main cause of chronic liver disease in such population. This is one of causes of death in long term renal transplant survivors (**Gheith**, **2011**).

Aim of the Work

■ To study the effect of HCV infection on graft function and survival in renal transplant recipients.

CHAPTER 1

Renal Transplantation

Introduction:

The definition of chronic kidney disease (CKD) has been simplified over the last 5 years. It is now defined as the presence of kidney damage for a period greater than 3 months. An estimated or measured glomerular filtration rate (GFR) of less than 60 ml/min/1.73 m2 is considered abnormal for all adults. A rate of more than 60 ml/min/1.73 m2 is considered abnormal if it is accompanied by abnormalities of urine sediment or abnormal results of imaging tests, or if the patient has had a kidney biopsy with documented abnormalities. As the reporting of estimated GFR has become more common, the relatively high prevalence of impaired kidney function (i.e., estimated GFR < 60 ml/min/1.73 m2) has become evident. The National Kidney Foundation (NKF) in the United States has published a classification system based on GFR as well as urinary and anatomic abnormalities (Table 1) to enhance the identification and management of CKD (Levin et al., 2008).

Table (1): showed classification of stages of chronic kidney disease (Levin et al., 2008)

CLASSIFICATION OF STAGES OF CHRONIC KIDNEY DISEASE			
STAGE	DESCRIPTION	GFR ML/MIN/1.73M ²	
1	Kidney damage with normal or increased GFR	<u>≥</u> 90	
2	Kidney damage with mild decrease in GFR	60-89	
3	Moderate decrease in GFR	30-59	
4	Severe decrease in GFR	15-29	
5	Kidney failure	<15	
		Or dialysis	

General management of CKD:

The general management of the patient with chronic kidney disease involves the following issues:

- 1. Treatment of reversible causes of renal dysfunction.
- 2. Preventing or slowing the progression of renal disease.
- 3. Treatment of the complications of renal dysfunction.
- 4. Identification and adequate preparation of the patient in whom renal replacement therapy (RRT) will be required (Schieppati et al., 2005).

Once it is determined that RRT will eventually be required, the patient should be counseled to consider the advantages and disadvantages of haemodialysis (in-center or at home), peritoneal dialysis (continuous or intermittent modalities), and renal transplantation (living or deceased