Characterization of Responders after Cardiac Resynchronization Therapy Implantation

Chesis

Submitted in partial fulfillment of the Master degree in Cardiology

By

Bassam Sobhy Kamal Hennawy

MBBCH, Ain Shams University

Under Supervision of

Prof. Dr./ Said Abdelhafeez Khalid

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr./ Hany Mohamed Ahmed Awadallah

Assistant Professor of cardiology Faculty of Medicine – Ain Shams University

Dr./ Haitham Abdelfattah Badran

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2013

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Study	2
Review of Literature	
- Heart Failure	3
- Ventricular Dyssynchrony	41
- Summary of all large randomized trials	55
- Response to CRT	81
Patients and methods	96
Results	103
Discussion	136
Recommendations and study limitations	152
Conclusions	153
Summary	154
References	156
Appendix	I
Arabic Summary	

List of Abbreviations

ACC : American College of Cardiology ACE : Angiotensin converting enzyme

AF : Atrial fibrillation

AHA : American Heart Association
ARB : Angiotensin receptor blocker

ARR : Absolute risk reduction

AV : Atrioventricular

b.i.d : bis in die BiV : Biventricular

CHF : Congestive heart failure
 CI : Confidence interval
 CKD : Chronic kidney disease
 CLD : Chronic liver disease

COPD : Chronic obstructive pulmonary disease
 CPI : Cardiac Pacemakers Incorporation
 CPX : Cardiopulmonary exercise testing
 CR/XL : Controlled release / extended release
 CRT : Cardiac resynchronization therapy

CRT-D : Cardiac resynchronization therapy with a

CRT-P : Cardiac resynchronization therapy pacemaker Defibrillator

ECG : Electrocardiogram EF : Ejection fraction

ESC : European Society of Cardiology

ESICM : European Society of Intensive Care Medicine ESPVR : End-systolic pressure—volume relationship

FDA : Food and drug administration

HF : Heart failure

HFA : Heart Failure Association

HFLEF: Heart failure with low ejection fraction

HFPEF: Heart failure with preserved ejection fraction

HR : Hazard ratio

HRS : Heart Rhythm Society

List of Abbreviations (Cont...)

ICD : Implantable cardioverter defibrillator inhibited pacing

IVCD: Interventricular conduction delay

LA : Left atrial

LBBB : Left bundle branch block

LV : Left ventricular

LVEDD : Left ventricular end diastolic diameter
 LVEDV : Left ventricular end diastolic volume
 LVEF : Left ventricular ejection fraction
 LVESD : Left ventricular end systolic diameter
 LVESV : Left ventricular end systolic volume

LVSD : LV systolic dysfunction MBP : Mean blood pressure

MLHFQ: Minnesota living with heart failure questionnaire

MR : Mitral regurgitation

MRA : Mineralocorticoid receptor antagonist

MRI : Magnetic resonance imaging

ms : millisecond

MSCT : Multislice computed tomography

NASPE: North American Society of Pacing and Electrophysiology

NNT : Number needed to treat NSR : Normal sinus rhythm

NYHA : New York Heart Association

OPT : Optimum pharmacological therapy

OR : Odds ratio

pVO₂: Peak oxygen consumption

QOL : Quality of life

RAAS : Rennin–angiotensin– aldosterone system

RBBB : Right bundle branch block **RRR** : Relative risk reduction

RV : Right ventricular

RVOT : Right ventricular outflow tract **RVSP** : Right ventricular systolic pressure

List of Abbreviations (Cont...)

SD : Standard deviation

VDD : Ventricular pacing, atrial sensing, both inhibited and triggered mode

VE/CO₂: Ventilation/carbon dioxide ratio

VF : Ventricular fibrillationVT : Ventricular tachycardia

VVI : Ventricular sensing, ventricular pacing and ventricular

6MWT : 6 minute walk test

List of Tables

Eable N	o. Eitle	Page	No.
Table (1):	Diagnosis of heart failure		11
Table (2):	Observational trials of resynchronization therapy in heart fail		56
Table (3):	Endpoints, design, and main finding randomized clinical trials evaluating the heart failure	CRT in	57
Table (4):	Gender and age distribution amo studied patients		103
Table (5):	Risk factors of the studied patients		104
Table (6):	Symptoms of the studied patients		104
Table (7):	History of the studied patients		105
Table (8):	Descriptive for the examination		106
Table (9):	Descriptive data for ECG		107
Table (10):	Descriptive data for echocardiography	(A)	108
Table (11):	Descriptive data for echocardiography	(B)	109
Table (12):	Descriptive data for fluoroscopy		110
Table (13):	Clinical responders		111
Table (14):	Echocardiographic responders		111
Table (15):	Comparison between the two regarding age and gender (Clinical res	C 1	112
Table (16):	Comparison between the two regarding risk factors (Clinical respon		113
Table (17):	Comparison between the two regarding symptoms (Clinical response	_ 1	115

List of Tables (Cont...)

Eable N	o. Eitle	Page No.
Table (18):	Comparison between the two regarding history (Clinical response)	
Table (19):	Comparison between the two regarding to examination (Clinical res	•
Table (20):	Comparison between the two regarding ECG (Clinical response)	-
Table (21):	Comparison between the two groups re echocardiography (Clinical response)	
Table (22):	Comparison between the two regarding fluoroscopy (Clinical responsa	_ 1
Table (23):	Comparison between the two regarding age and gender (echocardio response)	graphic
Table (24):	Comparison between the two regarding risk factors (echocardio response)	graphic
Table (25):	Comparison between the two regarding symptoms (echocardio response)	graphic
Table (26):	Comparison between the two regarding history (echocardio response)	groups graphic
Table (27):	Comparison between the two regarding examination (echocardio response)	graphic

List of Tables (Cont...)

Eable N	<i>o</i> .	Title		Page	No.
Table (28):	Comparison regarding response)	ECG	(echocardio	graphic	131
Table (29):	Comparison be echocardiograp response)	hy	(echocardio	graphic	133
Table (30):	Comparison regarding flu response)	oroscopy	(echocardio	graphic	133

List of Figures

Figure N	o. Eitle	Page	No.
Figure (1):	Arrangements of myocardial fibers		44
Figure (2):	Dyssynchrony that can or cann ameliorated by CRT.		47
Figure (3):	Dyssynchronous Heart		52
Figure (4):	CARE-HF study results		73
Figure (5):	M-mode echocardiogram before and aff	ter CRT	83
Figure (6):	Transthoracic apical four-chamber before and after CRT		84
Figure (7):	Relationship between QRS duration a ventricular dyssynchrony		87
Figure (8):	MSCT showing coronary sinus (site lead insertion)		101
Figure (9):	Comparison between the two regarding age and gender		112
Figure (10):	Comparison between the two regarding Diabetes mellitus		114
Figure (11):	Comparison between the two groups reg Dyslipidemia		114
Figure (12):	Comparison between the two regarding Symptoms		115
Figure (13):	Comparison between the two regarding Underlying Ht Ds		
Figure (14):	Comparison between the two regarding associated medical condition	groups	
Figure (15):	Comparison between the two regarding heart rate	_	118

List of Figures (Cont...)

Figure N	o. Eitle	Page	No.
Figure (16):	Comparison between the two regarding heart rate in ECG		120
Figure (17):	Comparison between the two regarding LV lead position		122
Figure (18):	Comparison between the two groups redistance between both leads		122
Figure (19):	Comparison between the two groups reage and gender		123
Figure (20):	Comparison between the two groups repliabetes mellitus		125
Figure (21):	Comparison between the two groups regularity dyslipidemia		125
Figure (22):	Comparison between the two groups resumptoms		126
Figure (23):	Comparison between the two groups regunderlying Ht Ds		128
Figure (24):	Comparison between the two groups reassociated medical condition	-	128
Figure (25):	Comparison between the two groups re-		130
Figure (26):	Comparison between the two groups replaced heart rate in ECG		132
Figure (27):	Comparison between the two groups replaced LV lead position		135
Figure (28):	Comparison between the two groups redistance between both leads		135

First and foremost, I feel always indebted to **God**, the Most Kind and the Most Merciful.

I wish to express my deepest thanks, gratitude and profound appreciation to **Prof. Dr./ Said Abdelhafeez Khalid,** Professor of Cardiology, Faculty of Medicine – Ain Shams University, under his supervision I have the honor to complete this work.

Great thanks also to go to Dr./ Hany Mohamed Ahmed Awadallah, Assistant Professor of cardiology, Faculty of Medicine – Ain Shams University, for his encouragement in this thesis.

I would like to thank **Dr./ Haitham Abdelfattah Badran**, Lecturer of Cardiology, Faculty of Medicine – Ain Shams University for his meticulous supervision, his valuable advices and support throughout this work.

Lastly but not least, I would like to thank all members who participated in achieving this work including my professors, colleagues, residents, technicians and nursing staff. Also my patients and their families for their cooperation.

I would like to dedicate this thesis to my **Father** and my **Mother**; to them I will never find adequate words to express my gratitude.

Introduction

ardiac resynchronization therapy (CRT) has changed the clinical management of patients with drug-refractory heart failure (HF).

Various randomized controlled trials have shown significant improvements in symptoms, left ventricular (LV) function, and long-term survival. However, approximately 30% to 40% of HF patients do not show clinical and/or echocardiographic response to CRT (*Dickstein et al.*, 2010).

So far, better characterization of patients who will respond to CRT has been the main focus of ongoing research. However, identification of non-responders to CRT may be also of interest (*Bax et al.*, 2009).

Current inclusion criteria may not be accurate enough to differentiate patients who will or will not respond to CRT. Other pathophysiologic factors such as HF etiology, LV dimensions and function, mitral regurgitation, LV dyssynchrony, position of LV pacing lead, and extent/location of myocardial scar have also shown to influence CRT response (*Castel et al.*, 2009).

Comprehensive characterization of HF patients who do not respond to CRT may help to further identify the pathophysiologic factors that strongly influence response to CRT (*Vidal et al.*, 2010).

Aim of the Study

This is a retrospective study in a single centre (Ain Shams University Hospitals) that aims at characterization of responders after CRT implantation.