IN VITRO ATTRACTIVENESS AND DEVIATION OF SUPERPARAMAGNETIC IRON OXIDE STEM CELLS TOWARDS MAGNETIC FIELD

Thesis

Submitted for Fulfillment of the Master Degree
On Internal Medicine

By Bahaa Mahmoud Mohamad Taha M.B.B.Ch

Supervised by Prof. Dr. Mohamad Saad Hamed

Professor of Internal Medicine& Endocrinology Faculty of Medicine - Ain Shams University

Prof. Dr Eman Abd-El-Aziz Khaled

Professor of Clinical Pathology Theodor Bilhariz Research Institute

Dr. Maram Mohamad Maher Mahdy

Lecturer of Internal Medicine& Endocrinology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First and for most, I feel indebted to ALLAH the most kind and the most merciful, for helping me to achieve this work.

I would like to express my deepest gratitude to **Professor Doctor Mohammad Saad Hamed**, Professor of Internal

Medicine and Endocrinology, Faculty of medicine, Ain Shams

University, for his instruction and precious guidance, continuous

encouragement and great advices to continue this work.

I would like to express my supreme gratitude to professor Doctor. Eman Abd El Aziz Khaled, Professor of Clinical Pathology, Theodor Bilhariz Research Institute for her coordinal help, and kind support.

I would like to express my special deepest thanks to **Doctor.** Maram Mohamad Maher, Lecturer of Internal Medicine & Endocrinology, Faculty of medicine, Ain Shams University, for her continuous effort and valuable advices.

Last but not the least; I am very grateful and really indebted to my family who offered me great love, help, and encouragement.

Bahaa Mahmoud

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	3
Review of Literature	
• General Features of Stem Cells	4
Sources of Stem Cells	16
• Clinical Applications of Mesenchymal Stem Cel	ls 39
 Clinical Applications & Preparations of Hematopoietic Stem Cells Transplantation 	52
Materials and Methods	68
Results	76
Discussion	81
Summary	89
Conclusion	92
Recommendations	93
References	94
Arabic Summary	

List of Figures (cont...)

Fig. No.	Title Po	age No.
Fig. (16):	Shows Lishman & Giemsa staining of MSCs with 50% MSCs with 80% conflue after 3-4 weeks.	ence
Fig. (17):	Exposure of cells toward magnetic field	77
Fig. (18):	Condensation of cells toward the side of magnet after removal from the rack	
Fig. (19):	Normal distribution of particles bet exposure to the magnet.	
Fig. (20):	Accumulation of particles toward the side magnet (right side).	
Fig. (21):	Attraction of particles toward the side magnet (side 1).	
Fig. (22):	Cells labeled with iron oxide on the side (2 (figure 20)	
Fig. (23):	Cells labeled with iron on the side (1) (figure 21)	

List of Abbreviations

Full term Abb. AF Amniotic fluid **ASCs** Adult stem cells BAL Bronchoalveolar lavage CDChron's disease Cytokeratin CKCK-9 Cytokeratin-9 Cytomegalovirus **CMV** CNS-SCs Central nervous system stem cells CS Cyclosporine Diffuse alveolar haemorrhage DAH DM Diabetes mellitus **ERC** Endometrial regenerative cells **ESCs** Embryonic stem cells **FACS** Fluorescence activated cell sorting **GFP** Green fluorescent protein Gastrointestinal Graft-versus-Host Disease **GVHD HAPC** Human activated protein C HHV-6 Human herpes virus-6 **HSCs** Haematopoietic stem cells **IBD** Inflammatory bowel disease *IBL* Interpapillary basal layer **ICCs** Intestinal crypt cells Inner cell mass **ICM** *IMS* Immuno magnetic separation

InVitro fertilization

IVF

LIF Leukemia inhibitory factor

MAPCs Multipotent adult progenitor cellsMIBE Measles inclusion body encephalitis

MSCs Mesenchymal stem cellsngn-3 Neurogenin-3-positive cells

PBL Papillary basal layer

Pdx-1 Pancreatic duodenal homeobox factor

PP Pancreatic polypeptide

RSV Respiratory syncytial virus **SPIO** Superparamagnetic iron oxide

TBI Total body irradiationTNF Tumor necrosis factorTSC Totipotent stem cells

TS-SCs Tissue specific stem cellsUACL Ulcer associated cell lineage

UC Ulcerative colitis

VOD Veno-occlusive disease

List of Tables

Table No.	Title	Page No.
Table (1):	Markers Used to Identify Stem Cells	27
Table (2):	Properties of adult stem cells	31
Table (3):	Surface markers expressed by UC-MSC and BM-MSCs	

List of Figures

Fig. No.	Title Pag	e No.
Fig. (1):	Human bone marrow derived Mesenchyma stem cell showing fibroblast like morpholog seen under phase contrast microscope (car zeiss axiovert 40 CFL) at 63 x magnification	y rl
Fig. (2):	What is stem cell?	5
Fig. (3):	Stem cell potency	8
Fig. (4):	Embryonic stem cells	17
Fig. (5):	Embryonic stem cells (ESC) line	18
Fig. (6):	Nuclear Transfer	19
Fig. (7):	Differentiation of stem cells	22
Fig. (8):	Identifying Cell Surface Markers Usin Fluorescent Tags	_
Fig. (9):	Microscopic Image of Fluorescent-Labeled SC	C 26
Fig. (10):	Stem cell plasticity	29
Fig. (11):	Stem cell transplantation for Crohn's disease	e 63
Fig. (12):	A) Human UC. B) Human UC were cut int small pieces. C): The UC was incised length to expose the blood vessels	ı,
Fig. (13):	-	
· ·	Shows MSCs 10% confluence after one wee stained with Lishman and Giemsa.	k
Fig. (15):	Shows Lishman & Giemsa stainin confluence after 2-3 weeks.	_

Introduction

esenchyme is embryonic connective tissue that is derived from the mesoderm and that differentiates into hematopoietic and connective tissue, whereas MSCs do not differentiate into hematopoietic cells (*Porcellini Adolfo et al.*, 2011).

Because the cells, called MSCs by many labs today, can encompass multipotent cells derived from other non-marrow tissues, such as umbilical cord blood, adipose tissue, adult muscle, corneal stroma (*Branch et al.*, 2012).

Adipose tissue is one of the richest sources of MSCs. When compared to bone marrow, there is more than 500 times more stem cells in 1 gram of fat when compared to 1 gram of aspirated bone marrow. Adipose stem cells are currently actively being researched in clinical trials for treatment in a variety of diseases.

The presence of MSCs in peripheral blood has been controversial. However, a few groups have successfully isolated MSCs from human peripheral blood and been able to expand them in culture (*J Orthop Res et al.*, 2012).

Detection

A cell can be classified as an MSC if it shows plastic adherent properties under normal culture conditions and has a fibroblast-like morphology. In fact, some argue that MSCs and fibroblasts are functionally identical (*Hematti et al., 2005*). Furthermore, MSCs can undergo osteogenic, adipogenic and chondrogenic differentiation ex-vivo. The cultured MSCs also express on their surface CD73, CD90 and CD105, while lacking the expression of CD11b, CD14, CD19, CD34, CD45, CD79a and HLA-DR surface markers (*Dominici et al., 2006*).

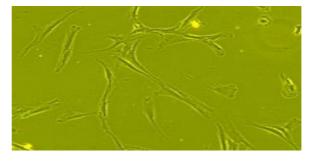
Differentiation capacity

MSCs have a great capacity for self-renewal while maintaining their multipotency. Beyond that, there is little that can be definitively said. The standard test to confirm multipotency is differentiation of the cells into osteoblasts, adipocytes, and chondrocytes as well as myocytes and neurons. MSCs have been seen to even differentiate into neuron-like cells (*Jiang et al.*, 2002), but there is lingering doubt whether the MSC-derived neurons are functional (*Franco Lambert et al.*, 2009). The degree to which the culture will differentiate varies among individuals and how differentiation is induced, e.g., chemical vs. mechanical; (*Engler et al.*, 2006).

AIM OF THE WORK

o study deviation and attractiveness of superparamagnetic iron oxide stem cells toward magnetic field in-vitro.

Chapter One


GENERAL FEATURES OF STEM CELLS

1- Introduction

stem cell is a special kind of cell that has a unique capacity to renew itself and to give rise to specialized cell types. Although most cells of the body, such as heart cells or skin cells, are committed to conduct a specific function, a stem cell is uncommitted and remains uncommitted, until it receives a signal to develop into a specialized cell. Their proliferative capacity combined with the ability to become specialized makes stem cells unique (Slack, 2000). Stem cells play a key role in tissue homeostasis and renewal after damage. Stem cells clarify the nature and the pathophysiology of several human diseases and can find new treatments for pathologies, such degenerative, autoimmune cancers. and genetic disorders, that are currently untreatable (Weissman, 2002).

Morphology

Fig. (1): Human bone marrow derived Mesenchymal stem cell showing fibroblast like morphology seen under phase contrast microscope (carl zeiss axiovert 40 CFL) at 63 x magnification (Ryan et al., 2005).

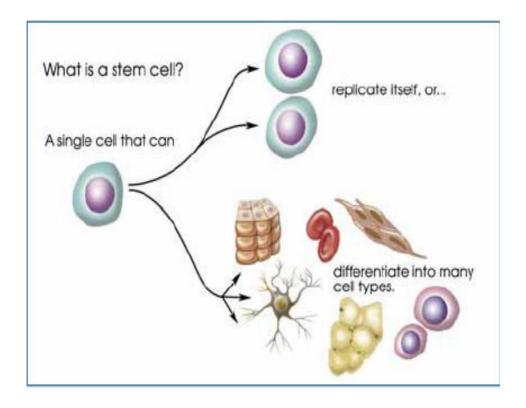


Fig. (2): What is stem cell? (Chandross, 2001).

2- Properties of a Stem Cell

A-Stem cells can divide and renew themselves

Stem cells are capable of making identical copies of themselves for the life time of the organism. This property is referred to as "self-renewal." Stem cells usually divide to generate progenitor or precursor cells, which then differentiate or develop into "mature" cell types that have characteristic shapes and specialized functions, e.g., muscle cell contraction or nerve cell signaling (*Chandross et al.*, 2001).

B-Stem Cells are Unspecialized

The unspecialized nature of stem cells is an important one. It means that stem cells lack the specific parts that allow them to perform specialized functions in the body. A stem cell is an undifferentiated (unspecialized) cell that occurs in a differentiated (specialized) tissue.

C-Stem Cells Can Give Rise to Specialized Cells

Differentiation is the process by which an unspecialized cell (such as a stem cell) becomes specialized into one of the many cells that make up the body. During differentiation, certain genes become activated and other genes become inactivated in a regulated fashion. As a result, a differentiated cell develops specific structures and performs certain functions.

For example, a mature, differentiated nerve cell has thin, fiber-like projections that send and receive the electrochemical signals that permit the nerve cell to communicate with other nerve cells. In the laboratory, a stem cell can be manipulated to become specialized or partially specialized cell types (e.g., heart muscle, nerve, or pancreatic cells) and this is known as directed differentiation (*Slack*, 2000).

3- Potency definition

Potency: It is the potential to differentiate into different cell types (Figure 2).

Totipotent stem cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent. These cells can differentiate into embryonic and extraembryonic cell *(Tuch, 2006)*.

Pluripotent stem cells are the descendants of totipotent cells and can differentiate into cells derived from any of the three germ layers (*Hans*, 2007).

Multipotent stem cells can produce only cells of a closely related family of cells (e.g. hematopoietic stem cells differentiate into red blood cells, white blood cells, platelets...) (*Hans, 2007*).

Unipotent stem cells can produce only one cell type, but have the property of self-renewal which distinguishes them from non-stem cells e.g. muscle stem cells (*Ulloa et al.*, 2005).