

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics and Industrial Pharmacy

Optimization of anti-infective multiparticulate systems for pulmonary delivery

Thesis presented by

Dina Omar Mahmoud Helal

Bachelor of Pharmaceutical sciences, 2007

Submitted in Partial Fulfillment of the Requirements for Master Degree of Pharmaceutical Sciences (Pharmaceutics)

Under supervision of

Professor Ahmed Shawky Geneidi

Professor of Pharmaceutics and Industrial Pharmacy,

Faculty of Pharmacy, Ain Shams University

Professor Gehanne Abdel Samie Awad

Professor of Pharmaceutics and Industrial Pharmacy,

Faculty of Pharmacy, Ain Shams University

Associate Professor Amany Osama Kamel

Associate Professor of Pharmaceutics and Industrial Pharmacy,

Faculty of Pharmacy, Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt (2015)

ACKNOWLEDGEMENT

First and foremost thanks to God by the grace of whom this work was achieved.

I would like to express my deepest gratitude and cordial appreciation to **Prof**. **Ahmed Shawky Geneidi**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for his continuous encouragement and support throughout the work.

No words could ever express my deep thanks and profound gratitude to **Prof**. **Gehanne A.S. Awad**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. I am indebted to her for the great help and effort she devoted for the completion of this thesis, for her instructive supervision, valuable comments and moral support.

I am also grateful to **Dr**. **Amany Osama Kamel**, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for her continuous support, kind supervision and precious guidance throughout the whole work.

My deepest appreciation to **Dr**. **Rihab Osman Ahmed**, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for her unlimited efforts, valuable advises and sincere encouragement throughout the whole thesis especially the spray drying, in vitro drug release and cytotoxicity parts.

I am also thankful to **Dr**. **Rania Hathout** and **Dr**. **Maha Nasr**, Lecturers of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for their fruitful help with the design expert program.

Special thanks to **Eman Rabie**, teaching assistant of biology, School of science and engineering, American University in Cairo for giving me a chance to work in the biotechnology lab.

I would like to express my deep thanks to all my colleagues in the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for their continuous support and encouragement.

Finally, a special debt of gratitude to my mother and father for their sincere encouragement and support.

LIST OF CONTENTS

Title	Page n	umber
List of abbrevi	ations	i
List of tables		iii
List of figures		iv
Abstract		vi
General introdu	uction	1
Scope of work		16
Chapter I: Pre	eparation and characterization of optimized miconazole	
nit	rate containing poly lactide co-glycolide nanoparticles	
Introduction		17
Experimenta	al	24
Materials		24
Equipmen	nt	24
Methodol	logy	
1. Spec	trophotometric assay of Miconazole Nitrate (MN)	25
1.1.	Determination of λ_{max} of MN in Dimethyl Sulfoxide	25
1.2.	Construction of calibration curve of MN	25
2. Prepa 2.1.	aration of MN containing PLGA nanoparticles Preliminary studies of the influence of	25
Variou	s formulation parameters	26
2.2. 3. Char	Factorial design of the experiments acterization of the prepared MN containing	26
PLG	A nanoparticles	28
3.1.	Particle morphology	28
i-	Photomicroscopic analysis of NPs	28
ii-	Transmission Electron Microscope (TEM)	28
3.2.	Determination of the drug encapsulation	
	efficiency (EE%) and Drug Loading (DL%)	28

3.3.	Particle size, size distribution and Zeta	
	potential (ζ) determinations of NPs	28
3.4.	Statistical analysis	29
Results and Discussion		30
1. Specti	rophotometric assay of Miconazole Nitrate (MN)	30
1.1.	Determination of λ_{max} of MN in DMSO	30
1.2. 2. Prepar	Construction of calibration curveof MN ration of MN containing PLGA nanoparticles	30 31
2.1. Prelin	ninary study of NPs preparation conditions	31
a)	Homogenization time	31
b)	PVA concentration	32
c)	Drug amount	32
d)	Aqueous phase volume	32
2.2. Optim	nization of NPs using factorial design	34
a)	Particle morphology	34
b)	Effect of formulation variables on MN NPs	
Char	acteristics	35
	1. Drug encapsulation efficiency	36
	2. Drug loading	41
	3. Particle size	44
c)	Zeta potential	48
Conclusion		49
_	eparation and characterization of miconazole nitrate microparticles by spray drying	
Introduction		50
Experimental	I	56
Materials		56
Equipmen	t	56
Methodolo	ogy	57
1. Specti	rophotometric assay of Miconazole Nitrate (MN)	57

1.1. Determina	ation of λ_{max} of MN in phosphate buffer saline	57
1.2. Construct	ion of calibration curve of MN	57
2. Preparation of na	anocomposite microparticles (NCMs)	57
2.1. Prelimina	ry studies for adjustment of spray drying	
Process co	onditions	57
2.2. Factorial	design experiment for producing inhalable	
MN NCN	As at optimized spray drying conditions	58
3. Evaluation of the	e prepared MN NCMs	59
3.1. Spray dry	ying yield	59
3.2. Determina	ation of powder flowability	59
3.3. Aerodyna	mic particle size determination	60
3.4. Estimation	n of powder re-dispersibility	60
3.5. Determina	ation of the powder moisture content	61
3.6. Quantitati	ion of MN in the prepared NCMs	61
3.7. Particle m	norphology	62
3.8. Differenti	al scanning calorimetry	62
3.9. X-ray pov	vder diffraction	62
3.10. In vitro di	rug release	62
3.11. In vitro ae	erodynamic deposition	63
4. Statistical analys	sis	65
Results and discussion		66
1. Spectrophotomet	tric assay of Miconazole Nitrate (MN)	66
1.1. Determinate	ion of λ_{max} of MN in Phosphate	
Buffer Salin	ne (PBS)	66
1.2. Construction	n of calibration curve of MN	66
2. Spray drying of t	the prepared MN NCMs	67
2.1. Adjustment	of spray drying process conditions	67
2.2. Optimization factorial design	on of spray dried inhalable MN NCMs using	69
2.2.1. Spray dr	ying yield	70
2.2.2. Powder f	lowability	74

2.2.3. Particle size, particle size distribution and MMAD	77
2.2.4. Powder re-dispersibility	79
2.2.5. Powder moisture and drug content	83
2.3. In depth characterization of the selected formulae	85
2.3.1. Particle morphology	85
2.3.2. Differential scanning calorimetry(DSC)	87
2.3.3. X-ray powder diffraction (XRPD)	89
2.3.4. <i>In vitro</i> drug release	91
2.3.5. <i>In vitro</i> aerodynamic deposition	94
Conclusion	96
Chapter III: Evaluation of the antifungal activity and cytotoxicity of miconazole nitrate nanocomposite microparticles	
Introduction	97
Experimental	100
Materials	100
Equipment	100
Methodology	101
1. Determination of the antifungal activity of the prepared	
NCMs	101
2.Determination of cytotoxic activity of NCMs	102
Results and discussion	103
1. Antifungal activity	103
2. Estimation of NCMs' cytotoxicity	104
Conclusion	107
Summary	
References	

List of abbreviations

Abbreviation	Word
A549	Human lung carcinoma cell line
ANOVA	Analysis of variance
$^{\circ}\mathrm{C}$	Degree Celsius
DCM	Dichloro methane
DF	Degree of freedom
DMSO	Dimethyl sulfoxide
DPI	Dry powder inhaler
DL%	Drug loading percentage
DLS	Dynamic light scattering
DSC	Differential scanning calorimetry
EE%	Entrapment efficiency percentage
ED%	Emitted dose percentage
f2	Similarity factor
FPF	Fine particle fraction
GRAS	Generally recognized as safe
HIV	Human immune deficiency virus
IC_{50}	50% inhibitory concentration
Ι%	Percentage inhibition
LDH	Lactate dehydrogenase
LPPs	Large porous particles
MDI	Metred dose inhaler
MIC	Minimum inhibitory concentration
MMAD	Mass median aerodynamic diameter
MN	Miconazole nitrate
MPs	Microparticles
MS	Mean of squares
MTT	3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium-bromide
NCMs	Nano composite microparticles
Nm	Nano meter
NPs	Nanoparticles
PBS	Phosphate buffer saline
PDI	Poly dispersity index
PLGA	Poly lactide co-glycolide
PVA	Poly vinyl alcohol
PVR	Organic to aqueous phase volume ratio
RH	Relative humidity
RP	Respirable particle fraction
Rpm	Revolution per minute
SD	Standard deviation
SEM	Scanning electron microscopy
S_f/S_i	Powder re-dispersibility
$\mathbf{S}_{\mathbf{f}}$	Size of dispersed particles
S_{i}	Size of initial nanoparticles before spray drying

SLN Solid lipid nanoparticles

SS Sum of squares

TEM Transmission electron microscopy

Tg Glass transition temperature TGA Thermogravimetric analysis

TSI Twin stage impinge

 $\begin{array}{ll} \mu g & Microgram \\ \mu m & Micrometer \end{array}$

VMD Volume mean diameter XRPD varay powder diffraction

 θ Angle of repose ζ Zeta potential ρ Tapped density

List of tables

Number	Table	Page
1	Composition of NPs formulations to study the effect of changing various	26
2	formulation conditions Factors and levels used in the factorial design for the preparation of MN NPs	27
3	Composition of different MN NPs according to the established factorial design	27
4	Effect of various formulation conditions on the EE%, DL%, particle size, and PDI of MN NPs	33
5	EE%, DL%, particle size, PDI and Zeta potential of the different formulae prepared according to the factorial design	37
6	ANOVA data for EE% of NPs	37
7	ANOVA data for DL% of NPs	42
8	ANOVA data for particle size of NPs	45
9	Spray drying of NPs using different process conditions	58
10	Factors and levels used in the factorial design for the preparation of MN NCMs	58
11	Composition of different MN NCMs according to the established factorial design experiment	59
12	Effect of spray drying process conditions on the % yield, powder flowability and powder re-dispersibility of the prepared MN NCMs	69
13	Percentage yield of the formulae prepared according to the factorial design	71
14	ANOVA data for % yield of MN NCMs	72
15	Angle of repose for the different formulae prepared according to the factorial design	75
16	ANOVA data for angle of repose	75
17	VMD, Span, tapped density and MMAD for the different formulae prepared according to the factorial design	78
18	ANOVA data for MMAD	78
19	Initial particle size, final particle size, S_f/S_i and % size increase for the different formulae prepared according to the factorial design	81
20	ANOVA data for S _f /S _i	81
21	Moisture content %, expected and actual drug content % for the different formulae prepared according to the factorial design	84
22	ANOVA data for moisture content	84
23	Cumulative % of drug released from different formulae	93
24	In vitro cytotoxicity and calculated IC ₅₀ of MN, S7 and B7 by MTT assay	105

List of figures

Figure	Figure	Page
number		
I	Upper and lower respiratory tracts	1
II	Formulation strategies adopted to improve pulmonary drug delivery	10
III	Schematic illustration of different micro/nano carriers used for drug delivery	17
IV	Illustration of PLGA structure and its endogenous degradation products	19
V	Different methods of PLGA nanoparticles preparation	20
1	Ultraviolet spectrum of Miconazole Nitrate in DMSO	30
2	Calibration curve of Miconazole nitrate in DMSO at λ_{max} 272 nm	31
3	Photomicrograph of NPs prepared using PLGA 75:25	34
4	TEM images of NPs prepared using PLGA 75:25 (a) x 3000, (b) x 3000, (c) x 6000	35
5	Box-cox plot for power transforms for EE%	38
6	Predicted vs actual values for EE%	38
7	Three dimensional surface plot representing the effect of phase volume ratio and polymer amount on MN EE% in NPs fabricated using PLGA 50:50	40
8	Three dimensional surface plot representing the effect of phase volume ratio and polymer amount on MN EE% in NPs fabricated using PLGA 75:25	40
9	Box-cox plot for power transforms for DL%	42
10	Predicted vs actual values for DL%	42
11	Three dimensional surface plot representing the effect of phase volume ratio and polymer amount on MN DL% in NPs fabricated using PLGA 50:50	43
12	Three dimensional surface plot representing the effect of phase volume ratio and polymer amount on MN DL% in NPs fabricated using PLGA 75:25	44
13	Box- cox plot for power transforms for particle size	45
14	Predicted vs actual values for Particle size	46
15	Three dimensional surface plot representing the effect of phase volume ratio and polymer amount on the particle size of NPs fabricated using PLGA 50:50	47
16	Three dimensional surface plot representing the effect of phase volume ratio and polymer amount on the particle size of NPs fabricated using PLGA 75:25	47
17	Twin stage glass impinger (a) Diagram, (b) Figure	65
18	Ultraviolet spectrum of miconazole nitrate in PBS containing 1% cetrimide	66
19	Calibration curve of miconazole nitrate in PBS containing 1% cetrimide at λ_{max} 272 nm	67
20	Box cox plot for power transforms for % yield	72
21	Predicted versus actual values of % yield	73
22	Three dimensional surface plot representing the effect of adding Leucine on the	73
	% yield of the dry powder	
23	Box cox plot for power transforms for powder angle of repose	76
24	Predicted vs actual values for powder angle of repose	76
25	Three dimensional surface plot representing the effect of Mannitol and Leucine on the powder angle of repose	77
26	Box- cox plot for power transforms for S_f/S_i	82
27	Predicted vs actual values for S_f / S_i	82

28	Three dimensional surface plot representing the effect of Mannitol and Leucine	83
	on S_f/S_i	
29	SEM images of NCMs (a) S3, (b) S7 and (c) S9	86
30	DSC thermograms of (a) miconazole nitrate, (b) mannitol, (c) PLGA and (d) S3	88
31	DSC thermograms of (a) miconazole nitrate, (b) leucine, (c) PLGA and (d) S7	88
32	DSC thermograms of (a) miconazole nitrate, (b) mannitol, (c) leucine, (d) PLGA and (e) S9	89
33	XRD patterns of (a) S3, (b) B3, (c) miconazole nitrate, (d) PLGA and (e) mannitol	90
34	XRD patterns of (a) S7, (b) B7, (c) miconazole nitrate, (d) PLGA and (e) leucine	90
35	XRD patterns of (a) S9, (b) B9, (c) miconazole nitrate, (d) PLGA, (e) mannitol and (f) leucine	91
36	Graphical representation of the cumulative % of drug released from different formulae	93
37	Bar chart representing the emitted dose (ED%) and fine particle fraction (FPF) of different formulae	95
38	Viability % of A549 cells after incubation with various concentrations of NCMs at 37 °C for 4 hours by MTT assay	106
39	Viability % of A549 cells after incubation with various concentrations of NCMs at 37 °C for 24 hours by MTT assay	106

Optimization of anti-infective multiparticulate systems for pulmonary delivery

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Pulmonary fungal infections have increased nowadays due to the increase in the number of immunocompromised patients. These infections are usually treated via systemic route. To minimize the side effects associated with systemic delivery, local targeting to the lung is being exploited as a suitable delivery route. Efficient delivery to the lung requires the fabrication of particles of suitable particle size and properties to ensure their alveolar deposition.

In this thesis, miconazole nitrate (MN) was encapsulated into poly lactide coglycolide (PLGA) nanoparticles (NPs) followed by their spray drying to obtain nanocomposite microparticles (NCMs) for local treatment of pulmonary fungal infections.

MN is one of the earliest discovered azoles, yet it is still commonly used for treatment of fungal infections due to its diverse mechanisms of actions against the fungal cells.

In chapter I, PLGA NPs of MN were prepared by solvent evaporation method. The effect of formulation variables such as homogenization time, surfactant concentration, drug amount and aqueous phase volume on entrapment efficiency (EE%), drug loading (DL%) and particle size were evaluated. The NPs formulation was further optimized using a full factorial design to study the effect of polymer type (PLGA 75:25 and PLGA 50:50), polymer amount (100, 200 and 300mg) and organic to aqueous phase volume ratio (PVR) (1:2 and 1:4). The obtained particles were characterized in terms of EE%, DL%, particle size and zeta potential (ζ).

The prepared NPs had EE% ranging between 26.12 and 49.58 % and DL% of 3.9 – 9.98%. The size range of the obtained particles was 273.3 - 374.2nm. All the prepared particles had a negative surface charge. Formula F10 prepared with 100 mg PLGA 75:25 and PVR 1:2 had optimum properties, with DL% =9.98% and particle size of 341.9 nm.

In chapter II, the optimized NPs were spray dried to obtain NCMs of suitable size for pulmonary delivery that are able to dissociate into their forming NPs upon contacting lung fluids. Spray drying conditions, namely, inlet temperature and feed concentration were optimized. The effect of different levels of mannitol and leucine (0, 25 and 50mg) on NCMs properties were then studied according to a full factorial design. The % yield, flowability, mass median aerodynamic diameter (MMAD), powder re-dispersibility (S_f/S_i), moisture and drug content of the obtained NCMs were evaluated. Further studies included the evaluation of: particles' morphology by scanning electron microscopy (SEM), particles' crystalline structure using differential scanning calorimetry (DSC) and x-ray powder diffraction (XRPD), *in vitro* drug release and *in vitro* evaluation of their deposition pattern using the twin stage impinge (TSI).

The spray drying yield of the obtained NCMs was between 23.56 and 52%. The angle of repose (θ) of the obtained particles varied between 38.48 and 48.82°. Their MMAD was in the respirable range (1.14 - 2.26µm). All particles showed good ability to re-disperse into their forming NPs and showed low moisture content varying between 0.22 - 0.68%. S3, S7 and S9 showed optimum characteristics and were subjected to further studies. The obtained particles were spherical in shape with surface texture varying between smooth and corrugated according to the used excipient. The drug was in the amorphous state in all the tested formulae. S7 had the slowest release pattern with only 85% of the drug being released within 2 weeks. On the other hand, S3 had the fastest pattern similar to that obtained by F10. By assessment of their in vitro aerosolization properties, the emitted dose (ED%) ranged between 56.64 and 83.3% and fine particle fraction (FPF) between 26.78 and 69%. S7 spray dried with 50 mg leucine had optimum properties; 39.61 % yield, $\theta =$ 48.82, MMAD = $1.95\mu m$, superior ability to re-disperse into its forming NPs with $S_f/S_i = 1.02$, moisture content of 6.3%, corrugated spherical particles with the slowest release pattern and FPF of 69%.

In chapter III, the antifungal activity of the prepared NCMs was assessed by determining their minimum inhibitory concentration (MIC) and comparing it to that of pure MN. Also the cytotoxicity of the prepared particles against lung epithelial cells (A549) was evaluated by MTT assay.

NCMs showed an eight fold higher antifungal activity with MIC = $0.49 \mu g/ml$ compared to $3.92 \mu g/ml$ obtained by pure MN. The prepared particles were safe to the lung epithelial cells at their MIC.

Keywords: Nanoparticles, poly lactide co-glycolide, solvent evaporation, spray drying, mannitol, leucine, nanocomposite microparticles, pulmonary, miconazole nitrate, fungal infections, cytotoxicity.

GENERAL INTRODUCTION

The respiratory system is responsible for supplying the body with oxygen and removing carbon dioxide. It mainly consists of the airways which are subdivided into two major regions, the upper respiratory tract, extending from the external nares to the larynx. Whereas the larynx, trachea, bronchi, bronchioles, and the lungs constitute the lower respiratory tract (**Figure I**). The lungs contain the alveoli, having a total surface area of 143m² and composed of a single epithelial layer of cells with extracellular matrix surrounded by highly perfused capillaries, they provide maximal surface area for gaseous exchange (**Hakim and Usmani 2014**).

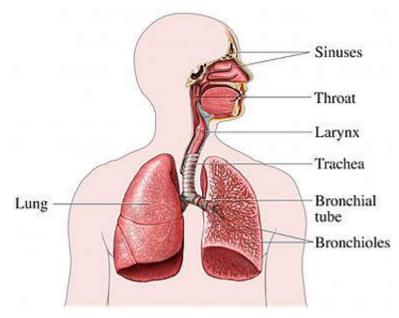


Figure I: Upper and lower respiratory tracts (Hakim and Usmani 2014).

Being a site for gas exchange and in contact with the exterior, the lungs are one of the most susceptible organs to infections due to their exposure to organic, inorganic and biological components that can cause diseases. There are a variety of bacterial, viral, fungal and parasitic infections that infect the lungs and can progress toward systemic infection including pneumonia, TB, influenza and aspergillosis. Infections of the lower respiratory tract are one of the main reasons of morbidity especially in low income countries (Andrade et al. 2013).

The increased number of immunocompromised patients in the last few decades associated with human immunodeficiency virus (HIV), cancer, hematologic disorders, and organ transplantations has increased the incidence of pulmonary fungal infections. There are a variety of fungal infections such as histoplasmosis, blastomycosis, coccidioidomycosis, cryptococcosis, aspergillosis, candidiasis and pneumonia that can affect the respiratory tract and cause pulmonary injury with different severities (Andrade et al. 2013).

Pulmonary infections are usually treated via the systemic route, either by oral or intravenous administration of antifungal agents such as: amphotericin B, flucytosine and a variety of azole derivatives (fluconazole, itraconazole and miconazole). However, these traditional treatments have poor therapeutic outcomes. Where, some antifungals suffer from slow dissolution as well as erratic and unpredictable bioavailability upon oral administration such as itraconazole which is one of the commonly used azoles. It is effective against some aspergillus infections, mucosal candidal infections, histoplasmosis, blastomycosis, coccidioidomycosis, and other fungal infections and is available either as oral capsules or an oral solution. The oral capsules are well absorbed in acidic media, and so are usually taken with food or acidic beverages to enhance gastric acid secretion and the concurrent use of proton pump inhibitors or antacids should be stopped to avoid problems of variable drug absorption. In contrast to the capsule form, the oral solution requires an empty stomach, and in both cases careful monitoring of the drug level in blood is required (**Limper et al. 2011**).

Respiratory infections are difficult to treat because microbes usually reside deep in the airways where only a small proportion of the systemically administered drug can access. Consequently, high doses of drugs are required to maintain drug levels above their minimum inhibitory concentrations (MIC) at the infection sites (**Zhou et al. 2015**). Amphotericin B deoxycholate (amphotericin B), the first treatment option for severe fungal infections including aspergillosis, cryptococcosis, candidiasis, and severe cases of histoplasmosis, blastomycosis, coccidioidomycosis, and