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Abstract

Optimization of anti-infective multiparticulate systems for
pulmonary delivery

Department of Pharmaceutics and Industrial Pharmacy, Faculty of
Pharmacy, Ain Shams University

Pulmonary fungal infections have increased nowadays due to the increase in the
number of immunocompromised patients. These infections are usually treated via
systemic route. To minimize the side effects associated with systemic delivery, local
targeting to the lung is being exploited as a suitable delivery route. Efficient
delivery to the lung requires the fabrication of particles of suitable particle size and
properties to ensure their alveolar deposition.

In this thesis, miconazole nitrate (MN) was encapsulated into poly lactide co-
glycolide (PLGA) nanoparticles (NPs) followed by their spray drying to obtain
nanocomposite microparticles (NCMs) for local treatment of pulmonary fungal
infections.

MN is one of the earliest discovered azoles, yet it is still commonly used for
treatment of fungal infections due to its diverse mechanisms of actions against the
fungal cells.

In chapter I, PLGA NPs of MN were prepared by solvent evaporation method. The
effect of formulation wvariables such as homogenization time, surfactant
concentration, drug amount and aqueous phase volume on entrapment efficiency
(EE%), drug loading (DL%) and particle size were evaluated. The NPs formulation
was further optimized using a full factorial design to study the effect of polymer
type (PLGA 75:25 and PLGA 50:50), polymer amount (100, 200 and 300mg) and
organic to aqueous phase volume ratio (PVR) (1:2 and 1:4). The obtained particles
were characterized in terms of EE%, DL %, particle size and zeta potential ({).

The prepared NPs had EE% ranging between 26.12 and 49.58 % and DL% of 3.9 —
9.98%. The size range of the obtained particles was 273.3 - 374.2nm. All the
prepared particles had a negative surface charge. Formula F10 prepared with 100
mg PLGA 75:25 and PVR 1:2 had optimum properties, with DL% =9.98% and
particle size of 341.9 nm.

In chapter 11, the optimized NPs were spray dried to obtain NCMs of suitable size
for pulmonary delivery that are able to dissociate into their forming NPs upon
contacting lung fluids. Spray drying conditions, namely, inlet temperature and feed
concentration were optimized. The effect of different levels of mannitol and leucine

Vi



Abstract

(0, 25 and 50mg) on NCMs properties were then studied according to a full factorial
design. The % vyield, flowability, mass median aerodynamic diameter (MMAD),
powder re-dispersibility (S¢S;), moisture and drug content of the obtained NCMs
were evaluated. Further studies included the evaluation of: particles' morphology by
scanning electron microscopy (SEM), particles' crystalline structure using
differential scanning calorimetry (DSC) and x-ray powder diffraction (XRPD), in
vitro drug release and in vitro evaluation of their deposition pattern using the twin
stage impinge (TSI).

The spray drying yield of the obtained NCMs was between 23.56 and 52%. The
angle of repose (0) of the obtained particles varied between 38.48 and 48.82°.Their
MMAD was in the respirable range (1.14 - 2.26um). All particles showed good
ability to re-disperse into their forming NPs and showed low moisture content
varying between 0.22 — 0.68%. S3, S7 and S9 showed optimum characteristics and
were subjected to further studies. The obtained particles were spherical in shape
with surface texture varying between smooth and corrugated according to the used
excipient. The drug was in the amorphous state in all the tested formulae. S7 had the
slowest release pattern with only 85% of the drug being released within 2 weeks.
On the other hand, S3 had the fastest pattern similar to that obtained by F10. By
assessment of their in vitro aerosolization properties, the emitted dose (ED%)
ranged between 56.64 and 83.3% and fine particle fraction (FPF) between 26.78 and
69%. S7 spray dried with 50 mg leucine had optimum properties; 39.61 % yield, 6 =
48.82, MMAD = 1.95um, superior ability to re-disperse into its forming NPs with
Si/S; = 1.02, moisture content of 6.3%, corrugated spherical particles with the
slowest release pattern and FPF of 69%.

In chapter Ill, the antifungal activity of the prepared NCMs was assessed by
determining their minimum inhibitory concentration (MIC) and comparing it to that
of pure MN. Also the cytotoxicity of the prepared particles against lung epithelial
cells (A549) was evaluated by MTT assay.

NCMs showed an eight fold higher antifungal activity with MIC = 0.49 pg/ml
compared to 3.92 pg/ml obtained by pure MN. The prepared particles were safe to
the lung epithelial cells at their MIC.

Keywords: Nanoparticles, poly lactide co-glycolide, solvent evaporation, spray
drying, mannitol, leucine, nanocomposite microparticles, pulmonary, miconazole
nitrate, fungal infections, cytotoxicity.
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General Introduction

GENERAL INTRODUCTION

The respiratory system is responsible for supplying the body with

oxygen and removing carbon dioxide. It mainly consists of the airways
which are subdivided into two major regions, the upper respiratory tract,
extending from the external nares to the larynx. Whereas the larynx, trachea,
bronchi, bronchioles, and the lungs constitute the lower respiratory tract
(Figure 1). The lungs contain the alveoli, having a total surface area of
143m? and composed of a single epithelial layer of cells with extracellular
matrix surrounded by highly perfused capillaries, they provide maximal

surface area for gaseous exchange (Hakim and Usmani 2014).

———— Sinuses

Throat
Larynx
Trachea

 Bronchial
tube

“Bronchioles
~

|

Figure I: Upper and lower respiratory tracts (Hakim and Usmani 2014).

Being a site for gas exchange and in contact with the exterior, the lungs
are one of the most susceptible organs to infections due to their exposure to
organic, inorganic and biological components that can cause diseases. There
are a variety of bacterial, viral, fungal and parasitic infections that infect the
lungs and can progress toward systemic infection including pneumonia, TB,
influenza and aspergillosis. Infections of the lower respiratory tract are one
of the main reasons of morbidity especially in low income
countries (Andrade et al. 2013).



General Introduction

The increased number of immunocompromised patients in the last few
decades associated with human immunodeficiency virus (HIV), cancer,
hematologic disorders, and organ transplantations has increased the incidence
of pulmonary fungal infections. There are a variety of fungal infections such
as histoplasmosis, blastomycosis, coccidioidomycosis, cryptococcosis,
aspergillosis, candidiasis and pneumonia that can affect the respiratory tract
and cause pulmonary injury with different severities (Andrade et al. 2013).

Pulmonary infections are usually treated via the systemic route, either
by oral or intravenous administration of antifungal agents such as:
amphotericin B, flucytosine and a variety of azole derivatives (fluconazole,
itraconazole and miconazole). However, these traditional treatments have
poor therapeutic outcomes. Where, some antifungals suffer from slow
dissolution as well as erratic and unpredictable bioavailability upon oral
administration such as itraconazole which is one of the commonly used
azoles. It is effective against some aspergillus infections, mucosal candidal
infections, histoplasmosis, blastomycosis, coccidioidomycosis, and other
fungal infections and is available either as oral capsules or an oral solution.
The oral capsules are well absorbed in acidic media, and so are usually taken
with food or acidic beverages to enhance gastric acid secretion and the
concurrent use of proton pump inhibitors or antacids should be stopped to
avoid problems of variable drug absorption. In contrast to the capsule form,
the oral solution requires an empty stomach, and in both cases careful
monitoring of the drug level in blood is required (Limper et al. 2011).

Respiratory infections are difficult to treat because microbes usually
reside deep in the airways where only a small proportion of the systemically
administered drug can access. Consequently, high doses of drugs are required
to maintain drug levels above their minimum inhibitory concentrations
(MIC) at the infection sites (Zhou et al. 2015). Amphotericin B
deoxycholate (amphotericin B), the first treatment option for severe fungal
infections including aspergillosis, cryptococcosis, candidiasis, and severe

cases of histoplasmosis, blastomycosis, coccidioidomycosis, and



