Cryoglobulinemia in Hemodialysis

Thesis Submitted For Partial Fulfillment of Master Degree in Nephrology

Presented By

Ehab Mohamed Abd El-Aziz

M.B,B.Ch, Diploma of Internal Medicine

Supervised By

Prof. Dr. Mohamed Ali Ibrahim

Professor and chair person of Internal Medicine and Nephrology Faculty of medicine Ain Shams University

Dr. Walid Ahmed Bichari

Lecturer of Internal Medicine and Nephrology
Faculty of medicine Ain Shams University

Dr. Khalid Omar Abdalla

Lecturer of clinical and chemical pathology Faculty of medicine Ain Shams University

> Faculty of medicine Ain Shams University

Acknowledgement

My thanks to Allah for the strength and insistence that I was given during the achievement of this work.

I find no words by which I express my thankfulness, gratitude and appreciation to **Professor. Mohamed Ali Ibrahim**, professor and chair person of internal medicine and nephrology Ain Shams university, for his unlimited support, guidance, advise and generous help and encouragement during supervising this work.

I would like to express my extreme appreciation and thanks to **Dr.Walid Ahmed Bichari**, lecturer of internal medicine and nephrology, faculty of medicine Ain Shams university, for his great support and valuable unlimited help and supervision throughout the thesis.

I would like to express my extreme appreciation and thanks to **Dr.IslamOmar Elshazly**, lecturer of internal medicine and nephrology, faculty of medicine Ain Shams university, for his great support and supervision throughout the thesis.

I am greatly indebted and grateful to **Dr. Khalid Omar Abdalla**, Lecturer of clinical and chemical pathology, and Faculty of medicine Ain Shams university for his advice, help and encouragement.

Lastly, but not the least, I would like to express a lot of thanks to all patients included in our study.

List of tables:-

Table No.	Tables title	Page No.
1	Extrahepaticmanifestations in HCV	170.
۲	Extrahepatic manifestations of HCV	١٧
٣	Clinical conditions that may be associated with	79
	cryoglobulinemia	
ź	Classification of cryoglobulinemia	77
٥	Mixed cryoglobulinemia classification among the systemic vasculitidis	7 8
٦	Proposed criteria for the classification of mixed cryoglobulinemia	٤٦
٧	Renal manifestations of mixed cryoglobulinemia	٥١
٨	Causes of death in mixed cryoglobulinemia patients	٦٠
٩	Therapeutic strategies for patients with HCV related mixed cryoglobulinemiavasculitis	٦٣
١.	Treatment of HCV infection in patients with CKD	٧٣
11	Comparison of quantitative variables in group A and group B	٨٥
١٢	Comparison of group A and group B as regard ESR& CRP	٨٨
١٣	Comparison of group A and group B as regard cryoglobulin	٨٩
۱ ٤	Correlation between cryoglobulin and other variables in group A and group B	9 •
١٥	Comparison of quantitative variables in patients with positive & negative history of vascular access occlusion	9 7
١٦	Comparison of patients with positive & negative history of vascular access occlusion as regard duration of hemodialysis, ESR, and CRP	9 £
١٧	Correlation between cryoglobulin and other variables in patients with positive and negative history of vascular access occlusion	90
١٨	Correlation between vascular access occlusion (thrombosis recurrence) and cryoglobulinemia	97
۱۹	Comparison between our study and Wu et al study	99
۲.	Comparison between our study and Anis et al study	١
۲١	Comparison between our study and Taina et al study	1.7

List of figures:-

Figure No.	Figures title	Page No.
1	Serum sample from a patient with mixed cryoglobulinemia in graduated wintrobe tube	٣٥
۲	Immunofixation electrophoresis in the patient's serum and urine with mixed cryoglobulinemia	٣٦
٣	B cell proliferation representing the biological substrate of mixed cryoglobulinemia	٤٠
٤	Possible etiopathogenetic mechanism for mixed cryoglobulinemia and other HCV related disorders	٤٢
٥	Possible etiopathogenetic mechanism for mixed cryoglobulinemia and other HCV related disorders	٤٣
٦	Lymphoid infiltrate in the bone marrow of a patient with HCV related cryoglobulinemia	٤٤
٧	Cutaneous cryoglobulinemicvasculitis	٤٩
٨	Kidney biopsy from a patient with HCV related cryoglobulinemia	٥٢
٩	Liver biopsy from a patient with HCV related chronic hepatitis associated with cryoglobulinemia	٥٧
١.	Fundus photographs of a patient with cryoglobulinemia	٥٩
11	Fluorescin angiogram photograph of left eye in a patient with cryoglobulinemia	09
١٢	Comparison of group A and group B as regard cryoglobulin	۸۹

List of abbreviations:-

AASLD	Americanassociation for the studyof liver disease
ALT	Alanine aminotransferase
AMA	Anti-mitochondrial antibody
ANA	Anti-nuclear antibody
APS	Anti-phospholipid syndrome
BCRs	B cell receptor
CDC	Centers for disease controland prevention
CDR	Complementary determining regions
CKD	Chronic kidney disease
CLL	Chronic lymphocytic leukemia
CRF	Chronic renal failure
EBV	Epstein Bar virus
EHM	Extra hepatic manifestations
ELISA	Enzyme linked immunosorbant assay
ESRD	End stagerenal disease
HAV	Hepatitis Avirus
HBeAg	Hepatitis B e antigen
HBV	Hepatitis Bvirus
HCV	Hepatitis Cvirus
HD	Hemodialysis
HIV	Human immunodeficiencyvirus
HLA	Human leucocytic antigen
IC	Immune complex
IFN	Interferon
LAC	Low antigen content diet
MC	Mixed cryoglobulinemia
MLDUS	Monotypic lymphoproliferative disorders of
	undetermined significance
MMF	Mycophenolatemofeteil
MPGN	Membranoproliferative glomerulonephritis
MU	Million unit
NHL	Non Hodgikin lymphoma
OR	Odd ratio
PBMCs	Peripheral blood mononuclear cells
PM/DM	Polymyositis/ dermatomyositis
PTFE	Ppolytetra fluro ethylene
RBV	Ribavirin
RF	Rheumatoid factor
SLE	Systemic lupus erythematosus

SSc	Systemic sclerosis
SS	Sjogren syndrome
SVR	Sustained virological response
TLR	Toll like receptor

Contents:-

Introduction	١
Aim of the work	۲
Review of literature	٤
Chapter \:- Hepatitis C virus in hemodialysis	c
Risk factors for HCV transmission in renal failure patients	c
HCV diagnosis in HD population and its obstacles	٦
HCV core antigen: A new diagnostic feature	c
Natural history and liver histopathology in HCV-infected HD patients	١.
Extra hepatic manifestations of HCV infection	١٥
Evidence of nosocomial transmission and preventive strategies	1 /
Treatment of hepatitis C virus infection in dialysis patients	۱۹
Treatment of acute HCV infection in CKD patients	۲.
Treatment of chronic HCV Infection in CKD patients	77
Chapter II:-Cryoglobulinemia	۲ ۶
Background	۲١
Definition	۲ ۸
Clinical conditions that may be associated with cryoglobulinemia	7 9
Classification of cryoglobulins	٣.
Laboratory finding, isolation and physical properties of cryoglobulins	٣ ٤
Hepatitis C virus and pathphysiology of mixed cryoglobulinemia and	٣,٨
lymphomagenesis	
Clinical manifestations of cryoglobulinemia	ا خ
Life threatening cryoglobulinemia	٦.
Causes of death in MC patients	٦.
Prevention	٦١
Clinical significance	٦١
Treatment of cryoglobulinemia	٦١
Chapter [*] :-Cryoglobulinemia in hemodialysis	Y C
Subjects and methods	٨١
Results	٨ ٤
Discussion	91
Master sheet	1.5
Summary and conclusion	117

جامعة عين شمس ٢٠١٢

INTRODUCTION

Cryoglobulinemia refers to a pathologic condition caused by production of circulating immunoglobulins that precipitate on cooling and resolubilize on warming. It is associated with a variety of infections especially hepatitis C virus (HCV), hepatitis B virus (HBV), hepatitis G virus (HGV), systemic lupus erythematosus (SLE), polyarteritis nodosa, multiple myeloma, Walden-Strom macroglobulinemia,etc. (Sansonno et al., '\..o').

Cryoglobulins First described in 1977 by Wintrobe and Buell, may be found in low levels in healthy individuals and likely represent endogenous immune complexes on the pathway to clearance by the reticuloendothelial system. Greater concentrations sufficient to cause disease are presumed to result from chronic immune stimulation, like lymphoproliferative diseases, and/ or defective clearance (Brouet et al., 1972).

In adults, hepatitis C accounts for more than ^ . . //. of patients with cryoglobulinemia. The remainders of cases are either idiopathic or associated with chronic inflammatory diseases. Although relatively few cases have been reported in children, the assumption is that cryoglobulins in both adults and pediatric patients share similar etiologic mechanisms. Cryoglobulinemia presents with renal and extra renal manifestations. Renal symptoms appear late few years after extra renal symptoms mostly. Kidney disease associated with Cryoglobulinemia usually manifests histologically as type -I- membranoproliferative glomerlonephritis (Roccatello et al., Y · · · V).

Cryoglobulinemic syndrome (with purpura, arthralgia, etc) in hemodialysis was not common. Only longer duration of end stage renal disease leads to more susceptibility to cryoglobulinemia. Also kidney transplanted patients are susceptible to have cryoglobulinemia (Wu et al., Y···).

Introduction

Cryoglobulinemia was prevalent in kidney transplant recipient, but appeared to not affect graft function. Hepatitis C virus infection was the most frequently associated etiology and clinical features were infrequent (Sens et al., Y...).

The treatment of cryoglobulinemia is by treatment of the cause. As hepatitis C virus is the commonest etiology, the treatment by anti viral therapy is the role, using interferon α and ribavirin. Also cryoglobulinemia can be treated by cyclophosphamide alone or in association with steroids. Plasmapharesis can be also used; Rituximab can be used (**Tedeschi et al.**, $\forall \cdot \cdot \lor$).

Only few studies in the literature have attempted to study the prevalence and clinical signs of cryoglobulinemia in hemodialysis patients.

AIM OF THE WORK

The aim of this study is to evaluate the prevalence of cryoglobulinemia among patients with chronic renal failure undergoing regular hemodialysis.

Hepatitis C in Hemodialysis Patients

HCV is an enveloped single stranded positive – sense RNA virus with a genome of approximately 977. nucleotides encoding a polyprotein precursor of about "... aminoacids; this precursor is subsequently cleaved by viral and host proteases resulting in three structural proteins and six non structural proteins. Structural proteins, encoded in N-terminal region, include the core protein (C), believed to be the viral capsid and envelop proteins (E\) and E\(\frac{1}{2}\); the non structural proteins, encode in the C-terminal region, are six proteins (NS^{\gamma}, NS^{\gamma}, NS^{\gamma}A, NS^{\gamma}B, NS^{\gamma}A, NS°B) that carry out a number of enzymatic activities, some of which are still not fully elucidated. The capsid protein is the most highly conserved among the proteins, while the structural proteinE7 is so diverse at the amino- terminal end that this region has been identified as hypervariable region \. E\ also contains the binding site for CD^\, a tetraspanin expressed on hepatocytes and on B and T lymphocytes, which is thought to behave as a cellular receptor or coreceptor for the virus. According to the differences of the variable regions six major genotypes have been recognized. Regarding the possible relation between a specific genotype and MC, some of the preformed studies failed to demonstrate a prevalence of specific genotypes among patients with MC compared with control groups, even if genotype \a seems rarely observed (Tedeschi et al., ۲ • • ۷).

The relation between hepatitis C virus (HCV) infection and kidney disorders is well recognized. On one hand, HCV infection may lead to membranoproliferative glomerulonephritis and essential mixed cryoglobulinemia, but on the other hand, patients with chronic renal failure are at an increased risk of acquiring HCV because of prolonged

vascular access and the potential for exposure to infected patients and contaminated equipments. Hepatitis C is the most common liver disease in renal dialysis patients while liver disease itself is a significant cause of morbidity and mortality in patients with end-stage renal disease (ESRD) treated by dialysis or transplantation (Johnson et al., 1997 and Fabrizi et al., 7...7).

Risk factors for HCV transmission in renal failure patients:

Almost all surveys have congruently suggested the length of time on Hemodialysis (HD) as a risk factor for HCV seropositivity. A relatively large study in Brazil demonstrated that patients on HD for more than "years had a \",\"-fold greater risk of HCV positivity compared to subjects with less than \ year HD treatment (Carneiro et al., \"\\ \"\ \"\ \"\ and Amiri et al., \"\\\\\\"\\\"\\"\"\"\"\).

Indeed, erythropoietin prescription from the late '٩٨٠'s onwards reduced the HD patients' need for blood transfusion. Furthermore, the introduction of nucleic acid amplification testing for the screening of blood donors has markedly reduced the risk of HCV transmission through blood product transfusion (**Stramer**, ' •• V).

The current risk of transfusion associated hepatitis C is approximately ' in ' million or even lower. A history of organ transplantation, dialysis in multiple centers, hepatitis B infection, human

immunodeficiency virus (HIV) infection and diabetes mellitus are other factors that have been suggested to be associated with HCV positivity by some investigators (O'Brien et al., Y...Y, El-Amin et al., Y...Y and Kalantar-Zadeh et al., Y...Y).

HCV diagnosis in HD population and its obstacles:

Routine serological testing for HCV infection among HD patients is currently recommended (Centers for Disease Control and Prevention, Y. 17).

The rational is based on the following evidence:

- (a) HCV infection has a silent and sub clinical course.
- (b) Liver biochemical tests are poor indicators of HCV infection among HD patients.
- (c) HCV infection is more prevalent among HD patients than in the general population.
- (d) Nosocomial transmission of HCV is a major problem in HD units.
- (e) Early identification of HCV-infected patients is essential (Natov and Pereira, Y...).

The current centers for disease control and prevention (CDC) recommendations for HCV screening in HD patients include testing for anti-HCV Ab and serum Alanine aminotransferase (ALT) on admission, ALT every month and anti-HCV Ab semiannually Although the cost-effectiveness of such an approach is questioned (Saab et al., Y...) and Centers for Disease Control and Prevention, Y...).

Fabrizi et al, followed a group of Y. HCV-negative Ab HD patients and found that the ALT level rose into the abnormal range in HD

patients at the onset of their HCV infection and thus they suggested the need to monitor chronic HD patients by serial ALT testing (Fabrizi et al., 1999).

A dilemma exists on the value of serology because some investigators reported a high rate of false-negative serologic testing. The immuno-compromised state of HD patients is usually regarded as an explanation for their deficient antibody response to HCV virus, Cellular immunity and systemic cytokine responses altered in HD patients. Although another study showed that the limited virus-specific CD^{£+} T-cell proliferative response seen in HD patients is comparable to that of chronic HCV carriers without renal disease (Fabrizi et al., Y···Y, Rico et al., Y···Y and Kalantar-Zadeh et al., Y···O).

The frequency of HCV RNA-positive by PCR with negative anti-HCV antibody HD patients is ranged from • to 'Y'. in all studied HD subjects in several reports (Yen et al., Y • • Y).

The reasons for the divergence in reports may be due to many factors including the sensitivity of the tests used, the HCV genotypes in the infected patients, or the degree of immunological alterations in the population tested (Kelley et al., Y...Y).

A relatively large study on oth HD patients showed that the median number of days that the HCV-RNA assay detected HCV infection earlier than anti-HCV testing was YET and YOE days for the second and third generations of enzyme linked immuno-sorbent assay (ELISA)