

Department of Entomology Faculty of Science Ain Shams University

Improving Production and Potency of Bioinsecticides based on Entomopathogenic Nematodes

A thesis
Presented to the Faculty of Science,
Ain Shams University, For the
Award of the Ph.D.
Degree
(Entomology)

BY

Hala Mohamed Sayed Metwally

B.Sc. Fac of Science, Ain Shams Univ.M. Sc. Fac. of Science, Ain Shams Univ.

Department of Entomology
Faculty of Science
Ain Shams University

Approval Sheet

Improving Production and Potency of Bioinsecticides based on Entomopathogenic Nematodes

By Hala Mohamed Sayed Metwally

M. Sc. Fac. of Science, Ain Shams Univ.,2007

Examiners Committee:	Approved
1- Prof. Dr. Monir M. El-Husseini Prof. of Biological control, Fac. of Agric., Cairo Univ.	•••••
2- Prof. Dr. Asmaa Z. El-Sharkawy Prof. of Entomology, Fac. of science, Al-Azhar Univ.	•••••
3- Prof. Dr. Jehan A. Hafez Prof. of Entomology, Fac. of Science, Ain Shams Univ.	•••••
4- Prof. Dr. Mohamed A. Hussein Prof. of Entomology, Fac. of Science, Ain Shams Univ.	

Date of Examination 15 /05/2013

Improving Production and Potency of Bioinsecticides based on Entomopathogenic Nematodes

By

Hala Mohamed Sayed Metwally

Under the supervision of:

Prof. Dr. Jehan Abdel Aleem Hafez
Professor of Entomology Faculty of Science Ain Shams University
Prof. Dr. Mohamed Adel Hussein
Professor of Entomology Faculty of Science Ain Shams University
Prof. Dr. Mahmoud Mohamed El Saied Saleh
Research Prof of Entomology, Pests and Plant Protection Dep
National Research Centre
Dr. Hamdy Abdel Naby Salem
Associate Research Professor, Pest and Plant Protection Dept
National Research Centre.
Dr. Mona Ahmed Hussein
Associate Research Professor, Pest and Plant Protection Dept
National Research Centre

ACKNOWLEDGMENT

Gratefully, the present research was undertaken at the Department of Plant Protection, National Research Center of Egypt (NRC), under the inspirational and pertinacious supervision of **Prof. Dr. Mahmoud Mohamed El-Saied Saleh**, Research Prof of biological control, Pest and Plant Protection Department at NRC, who suggested the study, planning out the whole experimentation. I should admit that he patiently guided me throughout the whole work.

My adequate thanks are to **Prof. Dr. Jehane Abdel- Aleem Hafez,** Department of Entomology, Ain-Shams University, for her credible comments and helpful suggestions.

I would like to express my greatest thanks and gratitude to **Prof. Dr. Mohamed Adel Hussein,** Prof. of Entomology Department, Ain-Shams University for valuable support, sponsoring the thesis and careful guidance.

Deep thanks are due to **Ass. Prof. Dr. Mona Ahmed Hussein,** Pests and Plant Protection Department, (NRC), for suggesting assistance and supporting in achievement of this work.

Greatest thanks and appreciation to **Ass. Prof. Dr. Hamdy Abdel Naby,** Pests and Plant Protection Department, (NRC), for continuous support, guidance and reviewing the manuscript.

I am gratefully acknowledging the assistance and advising of **Ass. Prof. Dr. Soad Nasr,** (NRC).

Greatest thanks and appreciation to my colleagues in Pests and Plant Protection Department, NRC, I wish to thank in particular, **Mokhtar Abd El-Raouf**, Assistant Researcher, (NRC) for his assistance and generous help in field experiment.

ABSTRACT

In the present work, two native isolates of entomopathogenic nematodes (EPNs), (*Steinernema carpocapsae* BA2, *Heterorhabditis bacteriophora* BA1) were studied in comparison with several worldwide species for their suitability for improving *in vivo* and *in vitro* solid mass production techniques. They were also studied for foliar applications against the cotton leaf worm *Spodoptera littoralis* and the black cut worm *Agrotis ipsilon* infesting corn plants with suitable adjuvants in laboratory, pot experiments and field standards.

For mass production of *Galleria mellonella*, the host for *in vivo* production of EPNs, four economical artificial diets were suggested for mass rearing of *G. mellonella* and compared to the natural food (beewax). The cost of diets, numbers, weights, food consumption and lipid content of *G. mellonella* larvae (last instars) reared on each diet were examined. *G. mellonella* larvae that were reared on different diets were tested, in turn, for their suitability of mass production of two Egyptian nematode isolates, *S. carpocapsae* BA2 and *H. bacteriophora* BA1. Two diets out of four were recommended for the best economic and effective mass production for *G. mellonella* as host larvae for EPNs.

Two Egyptian isolates of EPNs were studied for their suitability for improving *in vitro* production on both agar plates and in Bedding flasks in comparison to other worldwide EPNs (*Steinernema riobrave* and *Heterorhabditis marilatus*). In general, all strains were successfully propagated on the tested solid media. Quantitative evaluation has been carried out through nematode yielded number. This was the first trial to propagate *S. carpocapsae* BA2 on different artificial media. Results also showed that both bacterium and nematode inoculum size are important for optimizing the final yield in the production of *S. carpocapsae* BA2. Four virulent worldwide nematode species viz, *S. riobravae*, *Steinernema scaptarasci*, *Steinernema* sp. and *H. marilatus* were successfully cultured on a large scale using Bedding three-dimensional

culture technique. *S. riobrave* achieved the highest offspring production on the two tested media.

Culture methods effects (*in vivo* Vs. *in vitro*) on virulence and propagation ability of EPNs (*S. carpocapsae* BA2 and *H. bacteriophora* BA1) were carried out. *In vivo* produced nematodes showed almost the same virulence and propagation ability as *in vitro* produced ones.

Aiming at improvement of the Egyptian EPNs efficacy (*S. carpocapsae* BA2 and *H. bacteriophora* BA1) for foliar application against two of important foliar pests (*S. littoralis* and *A. ipsilon*) infesting corn plants. The effect of adding some of potential adjuvants "surfactants, polymers and oil" to sprays containing infective juveniles were examined in the laboratory on foliage against fourth larval instar of both *S. littoralis* and *A. ipsilon*.

For *S. littoralis*, some adjuvants (surfactant-polymer formulation) SPF significantly increased the nematode efficacy and thus increased % mortality of the pest. However, for *A. ipsilon*, data showed no significant differences between treatments used.

In field experiment, one of the treatments was chosen due to its available cheap constituents (Carboxymethyl cellulose (CMC) + tween 80 + paraffin oil). This treatment significantly increased the effect of both *S. carpocapsae* BA2 and *H. bacteriophora* BA1 against *S. littoralis* larvae. In case of *A. ipsilon* larvae, the same treatment significantly increased performance of *H. bacteriophora*.

Key words: Galleria mellonella, Steinernema carpocapsae, Heterorhabditis bacteriophora, Steinernema riobrave, Heterorhabditis marilatus, Steinernema scaptrisci, mass production, formulation Spodoptera littoralis, Agrotis ipsilon. surfactant-polymer formulation.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	6
1. Entomopathogenic nematodes : historic perspective and general	6
considerations	
1.1. Biology and life cycle	8
1.2. Symbiotic bacteria	9
2. <i>In vivo</i> production of entomopathogenic nematodes	12
2.1. Culture technique	12
2.2. Factors affecting yields	13
2.3. Insect host	14
3. <i>In vitro</i> solid production of entomopathogenic nematodes	16
4. Application and formulation of entomopathogenic nematodes	22
4.1. Application of entomopathogenic nematodes on foliar pests	22
4.2. Formulation of entomopathogenic nematodes for foliar application	26
III. MATERIALS AND METHODS	30
1. In vivo production of entomopathogenic nematodes	30
1.1. Organisms	30
1.1.1. Galleria mellonella (L.) (Lepidoptera: Pyralidae)	30
1.1.2. Nematodes	31
A- Steinernema carpocapsae BA2 (Nematodea: Steinernematidae)	31
B-Heterorhabditis bacteriophora BA1(Nematoda: Heterorhabditidae)	31
1.2. Experimental methods	32
1.2.1. Cost of suggested food formulae	32
1.2.2. Numbers and weights of produced larvae	35
1.2.3. Food consumption of <i>Galleria mellonella</i> larvae	35
1.2.4 Estimation of total lipid content of <i>G. mellonella</i> larvae	36
1.2.5. Nematode yields produced from differing Galleria mellonella	37
diets	

2. <i>In vitro</i> production of entomopathogenic nematodes	38
2.1. Production on agar plates	38
2.1.1. Suitability of tested nematodes for different culture media	38
2.1.2. Effect of nematode and bacterial inoculum size on the	43
production of Steinernema carpocapsae BA2	
2.2. Mass production in Bedding flasks	45
2.2.1.Comparative productivity of some entomopathogenic nematodes	45
on different media in Bedding flasks	
2.2.2. Sub-culture of <i>Steinernema riobrave</i> in Bedding-flasks	48
3. Virulence and propagation ability of in vivo and in vitro cultured	48
nematodes in larvae of Galleria mellonella	
4 .Formulation of entomopathogenic nematodes for foliar application	50
4.1. Nematodes	50
4.2. Insects	50
A. Agrotis ipsilon (Huf.) (Lepidoptera: Noctuidae)	50
B. Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae)	51
4.3. Maize, Zea mays L.	51
4.4. Adjuvants	52
4.5. Laboratory experiments	52
4.5.1. Effect of adjuvants on nematode survival	52
4.5.2. Effects of adjuvants on nematode infectivity	53
4.5.3. Evaluation of adjuvants for foliar application of <i>S. carpocapsae</i>	54
BA2 and H. bacteriophora BA1 against A. Ipsilon and S.	
littoralis on corn plants	
4.6. Field experiments	55
4.6.1. Nematodes	56
4.6.2. Insects:	56
4.6.3. Plants	56
5. Statistical analyses	56
IV. RESULTS AND DISCUSSION	57
1. <i>In vivo</i> production of entomopathogenic nematodes	57

1.1. Host diet effects on numbers and weights of produced larvae	57
1.2. Host diet effects on food consumption of Galleria mellonella larvae	60
1.3. Estimation of total lipids in <i>G. mellonella</i> larvae reared on different diets	61
1.4. Nematode yields produced from differing <i>G. mellonella</i> diets	63
2. <i>In vitro</i> production of entomopathogenic nematodes	65
2.1. Production on agar plates	65
2.1.1. Suitability of some entomopathogenic nematodes for <i>in vitro</i> production on different agar media	65
2.1.2. Effect of inoculum size of both bacteria and nematodes on the yield of <i>S. carpocapsae</i> BA2	69
2.2. Production of some entomopathogenic nematodes in Bedding flasks	72
2.2.1.Comparative productivity of some entomopathogenic nematodes on different media in Bedding flasks	72
2.2.2. Subculture of <i>Steinernema riobravae</i> in Bedding flasks.	76
3. Culture methods effects (<i>in vivo</i> Vs. <i>in vitro</i>) on virulence and propagation of entomopathogenic nematodes	77
3.1 .Virulence of <i>S. carpocapsae</i> BA2 produced from <i>in vivo</i> and <i>in vitro</i> cultures against larvae of <i>G. mellonella</i>	77
3.2. Virulence of <i>H. bacteriophora</i> BA1 produced from <i>in vivo</i> and <i>in vitro</i> cultures against larvae of <i>G. mellonella</i>	79
3.3. Propagation ability of <i>S. carpocapsae</i> BA2 produced from <i>in vivo</i> and <i>in vitro</i> cultures	81
3.4. Propagation ability of <i>H. bacteriophora</i> BA1 produced from <i>in vivo</i> and <i>in vitro</i> cultures	83
4.Formulation of entomopathogenic nematodes for foliar application.	86
4.1. Laboratory Experiments	86
4.1.1.Effect of adjuvants on nematode survival	86
4.1.2. Effect of adjuvants on nematode infectivity	87

4.1.3. Evaluation of adjuvants for foliar application of	89
entomopathogenic nematodes in laboratory	
4.1.3.1. Effect of adjuvants on nematode performance against	89
Spodoptera littoralis	
a) Steinernema carpocapsae BA2	89
b) Heterorhabditis bacteriophora BA1	94
4.1.3.2. Effect of adjuvants on nematode performance against Agrotis	97
ipsilon	
A. Steinernema carpocapsae BA2	97
B. Heterorhabditis bacteriophora BA1	98
4.2. Field experiment	102
V. CONCLUSION	106
VI. SUMMARY	108
VII. REFERENCES	118
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

EPNs	Entomopathogenic Nematodes
IJ(s)	Infective Juveniles
DJ(s)	Dauer juveniles
FC	Food consumption
CI	Consumption index
g	Gram
Kg	Kilogram
M	Medium
Т	Treatment
Dist.	Distilled
Hrs.	Hours
cm	Centimetre
ml.	Millilitre
L	Litre
μl	Micro litre
TTC	Triphenyl Tetracolium Chloride
UV	Ultra violet
DBM	Diamond back moth
CIB	Cereal leaf beetle
CMC	Carboxy methyl cellulose
TCA	Trichloroacetic acid
NBTA	Bromothymd blue-agar
SPF	Surfactant polymer formulation
BSA	Bovin serum albumin

LIST OF FIGURES

No.	Figure Title	Page
1	A breeding container of Galleria mellonella	30
2	A White trap for harvesting entomopathogenic nematodes	31
3	structure of sorbitol	32
4	Morphology of phase I of xenorhabbdus nematophilus on	40
	NBTB-Agar and photorhabdus luminescens on	
	MaCoconkey agar plates.	
5	Migration of nematode offspring of: (a) Steinernema	42
	carpocapsae BA2 (b) Heterorhabditis bacteriophora	
	BA1 from agar surface at harvest time	
6	Microscopic examination of Steinernema carpocapsae E	43
	propagated on agar plates	
7	Migration of nematode offspring out the medium surface	47
	in Bedding flasks at harvest time	
8	Multi-cell plate (24 cells) containing last-instar larvae of	54
	the greater wax moth Galleria mellonella used for the	
	five-on-one efficiency bioassay.	
9	Total lipid content in tissue of Galleria mellonella reared	62
	on different diets (D5= control)	
10	Nematode production in Galleria mellonella larvae reared	64
	on different diet formulae. Error bars indicate SE values	
11	Suitability of different nematodes to in vitro production	68
	on different agar media.	
12	Production of Steinernema carpocapsae BA2 on agar	71
	dishes using different inocula of nematodes and symbiotic	
	bacteria	
13	Suitability of some entomopathogenic nematodes to in	75
	vitro production in Bedding flasks using two growth	
	media	

14	Relationship between concentration of Steinernema	79
	carpocapsae BA2 produced from in vivo or in vitro cultures	
	and mortality percentage of Galleria mellonella larvae	
15	Relationship between concentration of Heterorhabditis	80
	bacteriophora BA1 produced from in vivo or in vitro cultures	
	and mortality percentage of Galleria mellonella larvae	
16	Propagation ability of Steinernema carpocapsae BA2	83
	produced from in vivo and in vitro cultures	
17	Propagation ability of Heterorhabditis bacteriophora	84
	BA1 produced from in vivo and in vitro cultures	
18	Mortality percentage in 4th instar larvae of Spodoptera	91
	littoralis infesting corn plants in pots after spraying	
	Steinernema carpocapsae BA2 with or without different	
	adjuvants	
19	Nematode suspension sprayed on plant leaf without (A)	93
	and with formulation adjuvant (B)	
20	Mortality in Spodoptera littoralis infesting corn plants in	96
	pots after spraying Heterorhabditis bacteriophora BA1	
	with or without different adjuvants	
21	Mortality in Agrotis ipsilon infesting corn plants in pots	98
	after spraying Steinernema carpocapsae BA2 with or	
	without different adjuvants	
22	Mortality in Agrotis ipsilon infesting corn plants in pots	100
	after spraying Heterorhabditis bacteriophora BA1 with	
22	or without different adjuvants	104
23	Mortality in larvae of <i>Spodoptera littoralis</i> and <i>Agrotis</i>	104
	<i>ipsilon</i> infesting corn plants in the field after treatment	
	with Steinernema carpocapsae BA2 and Heterorhabditis	
	bacteriophora BA1 with or without adjuvant.	

LIST OF TABLES

No.	Table Title	Page
1	Ingredients and cost of foods suggested for mass	34
	rearing of the wax worm Galleria mellonella	
2	Constituents of four culture media for tested	41
	nematodes	
3	Effect of suggested diets on number, weight of	59
	produced Galleria mellonella larvae and their food	
	consumption.	
4	Total lipid content in tissue of Galleria mellonella	61
	produced from different suggested diets.	
5	Effect of suggested diets on nematode production of	64
	Galleria mellonella larvae reared on different diets.	_
	In vitro production of some entomopathogenic	67
6	nematodes on different agar media	
7	In vitro production of Steinernema carpocapsae BA2	70
	at different inoculation sizes of nematodes and	
	symbiotic bacteria.	
8	Numbers of produced nematodes of different species	74
	from Bedding flasks using two growth media.	
9	Mortality Percentage in larvae of Galleria mellonella	78
	after exposure to different concentrations of	
	Steinernema carpocapsae produced from in vivo and in	
10	vitro cultures	
10	Mortality Percentage in larvae of Galleria mellonella after	80
	exposure to different concentrations of <i>Heterorhabditis</i>	
1.1	bacteriophora BA1 produced from in vivo and in vitro.	00
11	Propagation ability of Steinernema carpocapsae	82
10	BA2 produced from <i>in vivo</i> and <i>in vitro</i> cultures	0.4
12	Propagation ability of <i>Heterorhabditis bacteriophora</i>	84
1.2	BA1 produced from <i>in vivo</i> and <i>in vitro</i> cultures	07
13	Effect of some adjuvants on survival of infective	87
	juveniles of Steinernema carpocapsae BA2 and	

	Heterorhabditis bacteriophora BA1	
14	Mortality percentages in Galleria mellonella larvae after 48hrs. exposure to Steinernema carpocapsae BA2 or Heterorhabditis bacteriophora BA1 with different adjuvants	88
15	Mortality percentage in <i>Spodoptera littoralis</i> infesting corn plants in pots after spraying <i>Steinernema carpocapsae</i> BA2 with or without different adjuvants	90
16	Mortality Percentages in 4 th instar larvae of <i>Spodoptera littoralis</i> infesting corn plants in pots after spraying <i>Heterorhabditis bacteriophora</i> BA1 with or without different adjuvants	95
17	Mortality in 4 th instar larvae of <i>Agrotis ipsilon</i> infesting corn plants in pots after spraying <i>Steinernema carpocapsae</i> BA2 with or without different adjuvants.	97
18	Mortality percentages in 4 th instar larvae of <i>Agrotis ipsilon</i> infesting corn plants in pots after spraying <i>Heterorhabditis bacteriophora</i> BA1 with or without different adjuvants	99
19	Mortality percentages in 4 th larvae of <i>Spodoptera littoralis</i> and <i>Agrotis ipsilon</i> infesting corn plants in the field after treatment with <i>Steinernema carpocapsae</i> BA2 <i>and Heterorhabditis bacteriophora</i> BA1, with or without adjuvants	103