

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO-EGYPT

Computer and Systems Engineering Department

Graph-Based Approach for Symmetry Detection

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Electrical Engineering

Submitted by

Heba Ahmed Attwa Abu-Stait B.Sc. of Electrical Engineering (Computer and Systems Engineering) Ain Shams University, 2004

Supervised by

Prof. Dr. Hazem Abbas Dr. Mahmoud Ibrahim Khalil Cairo 2013

Curriculum Vitae

Name of the Researcher

Heba Ahmed Attwa Abu-Stait

Date of Birth

9thof April 1983

Place of Birth

Kuwait, Kuwait

First University

Degree

B.Sc in Electrical Engineering,

Computer and Systems Engineering Department, Ain- Shams University

Date of Degree June 2004

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author in the department of Computer and Systems Engineering, Ain Shams University.

No part of this Thesis has been submitted for a degree or a qualification at any other university or institute.

Name: Heba Ahmed Attwa Abu-Stait

ABSTRACT

Symmetry detection plays an important role in many applications. One of those applications is detecting symmetries of the Integrated Circuits layouts. Symmetry can be presented excessively in one layout design as it provides high efficiency in the circuit performance. Maintaining the geometrical symmetry of the circuit components during the layout compaction has great impact on analog circuit performance and poses great challenges to analog layout automation. Device matching and symmetry are very important in layout design of high performance analog circuits. The aim of this thesis is to find an efficient solution for detecting symmetry in Integrated Circuits layout. Approaches used to detect IC layout symmetry depend on extracting information from the circuit design. A new approach is presented to detect IC layout symmetry between polygons using image processing. In this thesis, a novel method for detecting symmetry is introduced. Taking advantage of the type of images used of layout designs to have more efficient symmetry detection algorithm.

The algorithm is implemented by C++ and tested using several analog layout designs. The new algorithm is successful in detecting symmetry in layout images compared to other ones. This approach detects translation, scale, rotation and partial symmetries in the IC layout design. In comparison to famous symmetry detection algorithms like SIFT, the new approach succeeds to detect symmetric polygons with higher speed and more accurate results.

ACKNOWLEDGMENT

All praise is due to Allah, Most Merciful, the Lord of the Worlds, Who taught man what he knew not. I would like to thank God Almighty for bestowing upon me the chance, strength and ability to complete this work.

First of all, I wish to express my gratitude to my supervision committee for their exceptional guidance, encouragement, insightful thoughts and useful discussions. It was my great pleasure to work with Professor Hazem Abbas and Dr Mahmoud Khalil. I am extremely grateful to Professor Hazem for his continuous support and patience. I am in great debt to Dr Mahmoud for being under his mentorship.

Second, I would like to thank Mohammed Omar for his support and help in all the mathematical proofs in this thesis and numerous technical conversations that we had regarding different topics. I would also like to thank Sherif Hany and Yasmine Badr for their continuous support and enthusing help and very helpful comments.

In addition, a big thank you goes to many friends who supported me at various stages of this work. Special thanks must be addressed to Hazem Said, Eman Tarek, Amr Helal, Mahmoud Khairy, Zeinab Ali, Mai Ali and Basma El-ahmady who helped me a lot in getting many of the resources and developing the target system during the research. I would like to thank Walaa Ashraf and Marwa Shafee for their help in the creation and formating of this thesis in LYX.

Finally, I would like to express my gratitude and love to my parents, sister and brother for their endless support and help all the time.

Contents

Li	st of l	Figures	XI
Li	st of '	Tables	XIII
Li	st of A	Abbreviations	XVI
Li	st of S	Symbols X	VII
1	Intr	roduction	1
	1.1	Motivation	2
	1.2	Problem statement	
	1.3	Thesis Outline	3
2	Lay	outs	5
	2.1	What is integrated circuit?	5
	2.2	Where is layout design from this?	6
		2.2.1 Inverter example	7
	2.3	Manufacturing overview	8
	2.4	Layout design rules	10
		2.4.1 Scalable design rules	12
	2.5	Symmetry in layout	13
		2.5.1 Levels of symmetry	14

CONTENTS

			2.5.1.1	Inter-device symmetry	14
			2.5.1.2	Intra device symmetry	15
			2.5.1.3	Bulk symmetry	16
			2.5.1.4	Routing Symmetry	17
	2.6	Layou	t automatic		19
		2.6.1		ayout automation approaches	19
3	Sym	metry (detection a	approaches	23
	3.1	Introd	uction		23
3.2 Description			26		
		3.2.1	Gradient	-based symmetry detectors	26
			3.2.1.1	Methodology	26
			3.2.1.2	Disadvantages	27
		3.2.2	Phase-ba	sed symmetry detectors:	27
			3.2.2.1	Advantages	29
			3.2.2.2		29
		3.2.3	Graph-ba	ased symmetry detectors	29
	3.3	Featur	e Extraction	on	33
		3.3.1		ature properties	34
	3.4	The m	ain flow		
		3.4.1	Feature d	letectors	36
			3.4.1.1	Corner Detectors	37
			3.4.1.2	Blob Detectors	38
			3.4.1.3	Region Detectors	38
			3.4.1.4	Scale-space for feature detectors	38
			3.4.1.5	The Gaussian filter and Discrete image	
				convolution	40
		3.4.2	Feature d	lescriptors	41
			3.4.2.1	SIFT descriptor	41
			3.4.2.2	Speeded Up Robust Features SURF	41
			3.4.2.3	Gradient location-orientation histogram	
				GLOH	42

CONTENTS

6	Con	clusions	s and Futu	SIFT ones		74 83
6	Con	clusions	s and Futu	SIFT ones		
				-		74
				The men angerman results company	cu to	
			5.2.1.1	The new algorithm results compare		
		5.2.1		on of symmetry detection		70
	5.2					70
	5.1	-				67
5	Descriptor and Matching					67
	4.5	Conclu	ision			64
		4.4.2	Evaluation	on of extractors		60
		4.4.1	Data set			60
	4.4			l results		60
	4.3			detection		53
	4.2			tection		50
•	4.1		eature dete	ection		46
4	Feat	ture Ext	traction			45
		3.4.4	The prop	oosed algorithm		44
		3.4.3		matching strategies		43
				wide-baseline stereo DAISY		42
				An efficient dense descriptor applie		

List of Figures

2.1	CMOS Inverter (a) Schematic diagram (b) Layout design	
	(c) Physical form (in cross-section)	8
2.2	Patterning of silicon dioxide	10
2.3	Design Rules	12
2.4	Two interdigitized transistors	15
2.5	Common centroid arrays. Devices are denoted by letters A and B	16
2.6	Bulk at the ends of transistor	17
2.7	Metal loses its symmetry property after compaction due to symmetry constraints absence	18
2.8	(a) Cascode current mirror (b) Template view	20
2.9	A floorplan representation of an integrated circuit and a symmetry axis marked with dotted line between certain blocks of the circuit.	21
3.1	Symmetry types	25
3.2	Fourier series representation	28
3.3	The symmetry extraction pipeline	30
3.4	Main stages of the proposed algorithm	36
3.5	Building scale space	40
3.6	Different grids used for feature descriptors	42

LIST OF FIGURES

SIFT Extracted Features are marked by 'X'	47
Result of convolution between step function and Gaussian	
one of different widths w and s respectively	50
The circle of the 16 pixels. The pixel p is the center of the	
candidate corner	51
FAST Extracted Features are marked by 'X'	52
Changes in the intensity with moving the window	53
Auto-correlation principle curvature	56
R and M relationship	58
HARRIS Extracted Features are marked by 'X'	59
SIFT corner points extracted with different four scales of	
NanGate library images	61
FAST corner points extracted with different four scales of	
	61
	62
SIFT, FAST, HARRIS corner points for NOR4_X4	64
Corner point descriptor consists of four ratio values: two	
<u>.</u>	
I I	69
	71
	72
	74
	75
	76
	77
OpampPass - Layer 23	79
OpampPass - Layer 23	80
Mapping constraint to metal part in layout	85
Apply symmetry to the compaction flow of layout	86
	Result of convolution between step function and Gaussian one of different widths w and s respectively. The circle of the 16 pixels. The pixel p is the center of the candidate corner FAST Extracted Features are marked by 'X' Changes in the intensity with moving the window Auto-correlation principle curvature R and M relationship HARRIS Extracted Features are marked by 'X' SIFT corner points extracted with different four scales of NanGate library images FAST corner points extracted with different four scales of NanGate library images HARRIS corner points extracted with different four scales of NanGate library images SIFT, FAST, HARRIS corner points for NOR4_X4 Corner point descriptor consists of four ratio values; two predecessor ratio values to the corner point and two successor ratio ones respectively. Matching result of open source SIFT library Matching result of the proposed algorithm BUF_X16 NOR4_X4 DFFRS_x2 TBUF_X16 OpampPass - Layer 23 OpampPass - Layer 23 Mapping constraint to metal part in layout

LIST OF FIGURES

A.1	Single-crystal ignot cutted into thin slices with wafer saw .	88
A.2	Different operations of photolithography process	89
A.3	Positive and negative photresist	91
A.4	Inverter cross section	92
A.5	Inverter mask set	93
A.6	Masks	94
A.7	Start with blank wafer	94
A.8	Oxidation process where the wafer is covered with SiO_2	95
A.9	Photoresist is spinned on the oxide	95
A.10	Lithography where the photoresist is exposed through n-	
	well mask	95
A.11	Oxide exposed is etched with acid	96
A.12	Remaining photoresist stripped off	96
	N-well formed by diffusion or ion implantation	96
A.14	Remaining oxide stripped off using acid	96
A.15	Thin gate oxide layer oxidized then polysilicon layer added	97
A.16	Polysilicon patterning	97
A.17	Expose to n+ dopants using oxide and masking to form	
	nMOS source , drain and nwell contact	97
A.18	N-diffusion	98
	N-diffusion	98
A.20	N-diffusion. Strip off oxide	98
A.21	Similar steps used to form p+ diffusion	99
A.22	Contacts used to wire the devices created by covering with	
	field oxide then etching where contact cuts are needed	99
A.23	Metallization where aluminum is sputtered over the whole	
	wafer and excess metal is removed by patterning leaving	
	wires	100