#### Evaluation Of Quality Of Vision After Photorefractive Corneal Surgeries

#### Assay

Submitted for partial fulfillment of M.Sc degree in Ophthalmology

By
Reyam Ahmed Salem El-kady
M.B.B.CH.
Cairo University

Supervisors

Dr. Haytham Ezzat Nasr

Prof. of Ophthalmology Faculty of Medicine Cairo University

Dr. Riad Bahey-Eldin
Shalash
Assist. Prof. of Ophthalmology
Faculty of Medicine
Cairo University

Dr. Mohamed Fakhry

Khatab

Assist. Prof. of Ophthalmology

Faculty of Medicine

Cairo University

Faculty of Medicine Cairo University 2008

## FITTERS CONTROLL STATES OF THE STATES OF THE

الله المجافرة المعالمة المعال



#### Acknowledgement

I am greatly honored to express my thanks to my dear supervisors, **Professor. Dr. Haythm Ezt Nasr** for his support and advice.

I am grateful to **Assistant Professor Dr Reyad Bahi EL Deen Shalash**, who supported me and guided me in this work with his valuable advice and experience.

I am also grateful to **Assistant Professor Dr Mohammad Fakhry Khatab** for his great help and support throughout this work.

Last but not least I would like to thank my dear family to who dedicate this work.

#### **ABSTRACT**

The goal of the refractive Surgery is to improve the vision in ametropic eye patients without the aid of spectacles or contact lenses.

The evaluation of postoperative outcome has rationally been based on high contrast distance visual acuity and residual refractive errors which are indeed correlated with overall patients visual function and satisfaction following the surgery. However, there are many refractive surgery patients with minimal residual Sphero-Cylindrical error and excellent UCVA who are dissatisfied with their postoperative visual quality.

In an attempt to identify more sensitive measures to evaluate the visual function following refractive surgery, psychophysical tests should be done.

These tests have been considered to give more information about vision than snellen's acuity, especially regarding the visual quality.

For more accurate assessment of visual quality contrast sensitivity testing is currently considered the most reliable way for evaluation of the visual quality.

#### **Key Words:**

Assessment of visual quality, Photorefractive procedures, Visual quality after photorefractive corneal surgeries.

#### **Table of contents**

| List of abbreviations                                 | II |
|-------------------------------------------------------|----|
| List of figures                                       | IV |
| Introduction and Aim of work                          | 1  |
| Review of Literature                                  |    |
| <b>Chapter 1 Assessment Of Visual Quality</b>         | 4  |
| <b>Chapter 2 Photorefractive Procedures</b>           | 18 |
| <b>Chapter 3 Visual Quality After Photorefractive</b> |    |
| Corneal Surgeries                                     | 28 |
| Summary                                               | 41 |
| References                                            | 42 |
| Arabic Summary                                        | 60 |

#### **List of Abbreviations**

BCVA Best Corrected Visual acuity

BSCVA Best Spectacle Corrected Visual acuity

CCD Closed-Ciruit-device

cpd Cycle Per degree

CS Contrast Sensitivity

CSF Contrast Sensitivity Function

D Diopter

Epi-LASIK Epi-Polis laser in situ kertomileusis

ETDRS Early Treatment Diabetic Retinopathy study

FACT Functional Acuity Contrast Test

LASIK Laser in situ Keratomileusis

LASEK Laser assisted Subepithelial Keratomileusis

μM Micrometer mm millimeter

MTF Modulation Transfer Function

nm Nanometer

OPD-scan Optical path difference scanning system

OTF Optical Transfer Function

PRK Photorefractive Keratectomy

PSF Point Spread Function

PTF Phase Transfer Function

RMS Root Mean Square

SRR Spatially Resolved Refractometer

Tracy VFA Tracy Visual Function analyzer

UCVA Un-Corrected visual acuity

#### **List of Figures**

| Fig1  | Snellen acuity chart                                       |
|-------|------------------------------------------------------------|
| Fig2  | Landolt C rings                                            |
| Fig3  | Regan chart                                                |
| Fig4  | Bailey-lovie chart                                         |
| Fig5  | EDTRS chart                                                |
| Fig6  | Pelli-Robson chart                                         |
| Fig7  | Small letter Contrast test                                 |
| Fig8  | Landolt-CS chart                                           |
| Fig9  | Vistech chart                                              |
| Fig10 | Functional acuity contrast test                            |
| Fig11 | Glare disability test                                      |
| Fig12 | The Wave Front aberration                                  |
| Fig13 | Different Ocular aberrations image                         |
| Fig14 | Luminance as a Function for a sinusoidal objects           |
| Fig15 | Principle of Hartman-shack sensor                          |
| Fig16 | Principles of Tracy VFA                                    |
| Fig17 | Example of anatomical changes in a case of hyperopic LASIK |
| Fig18 | Dislodged LASIK flap                                       |
| Fig19 | Epithelial ingrowth under LASIK flap                       |
| Fig20 | Subepithelial haze following LASEK                         |
| Fig21 | C.S values preoperative, 3 & 6 months after PRK            |

| Fig22 | CS values Preoperative, 3 & 6 months after LASIK     |
|-------|------------------------------------------------------|
| Fig23 | CS values preoperative and1month after LASIK         |
| Fig24 | CS values preoperative, 1 week 1 & 3 months LASIK    |
| Fig25 | CS values preoperative, 1 & 6 & 9 months after LASIK |
| Fig26 | CS values in five spatial frequency                  |

# Introduction es Aim Of The Work

#### **Introduction And Aim Of The Work**

As refractive surgery has grown during the past 10 years, Refractive surgeons now operate on an increasing larger spectrum of ametropia including myopia, astigmatism and hypermetropia. <sup>1</sup>

Until recently, the definition of success in refractive surgery was essentially based on clinical criteria such as uncorrected visual acuity(UCVA), best corrected visual acuity(BCVA), refraction within one diopter (D) of the targeted correction or the number of snellen acuity lines lost or gained after the procedure.<sup>1</sup>

Because refractive surgery candidates have organically healthy eyes, high levels of patient satisfaction are essential, for which quality of vision is critical. <sup>2</sup>

Although snellen acuity is the standard measure of vision, it dose not measure the visual quality in a wide range of sizes and contrast that represent everyday objects <sup>3</sup>

For more accurate assessment of visual quality contrast sensitivity CS testing is currently considered the most reliable way for evaluation the quality of vision <sup>4</sup> as it tests the contrast and glare vision that overcomes the limitation of snellen acuity testing <sup>3</sup>

The contrast sensitivity function CSF is a measure of contrast sensitivity for range of spatial frequencies and characterizes how well the visual system performs in a complex environment better than snellen acuity measurement. <sup>5</sup>

Photorefractive procedures are surgical procedures that use excimer laser for removing corneal tissue to correct refractive errors <sup>3</sup>. They includes:

Surface ablation procedures as photorefractive keratectomy (PRK), Laser assisted subepithelial keratomileusis (LASEK) & Lamellar ablation procedures that include Laser in situ keratomileusis (LASIK) & EPI-LASIK.

LASEK is a less invasive procedure than LASIK that allows treatment of thin corneas with achieving good outcome in safety, efficacy and predictability <sup>6</sup>.

Epi LASIK is a recent surgical procedure in which the separation of epithelial sheet is obtained mechanically without requiring using alcohol or other chemical agent <sup>7,8</sup>.

Although photorefractive procedures have a high rate of improving uncorrected snellen acuity, they degradate the visual quality as they increase high order aberrations resulting in reduced night vision clarity, and halos.<sup>9</sup>

To overcome such drawbacks of photorefractive surgeries, wavrfront analyzer and subsequent wavefront-guided excimer laser ablation has been introduced into refractive surgery.<sup>3</sup> The basic concept of wavefront-guided technology is measurement of wavefront aberrations using an analyzer and conversion of this information into pattern for excimer laser ablation.<sup>3</sup>

It is believed that this new generation of wavefront- technology will preserve and even improves visual performance <sup>10</sup>

#### **Aim Of Work**

To evaluate the visual quality after PRK, LASIK, LASEK, EPI-LASIK and wavefront guided PRK, LASIK, LASEK

### Review of literature