ENVIRONMENTAL EFFECTS OF DRILLING ONSHORE OIL AND GAS WELLS AND STUDYING THE SITE RESTORATION

By
Khaled Gamal Mohamed Abdel Razek
B.SC. Science (Chemistry), Ain Shams University, 1994
Master in Environmental Sci., Ain Shams University, 2003

A Thesis Submitted in Partial Fulfillment of The Requirement for the Doctor of Philosophy In Environmental Science

Department of Basic Environmental Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

ENVIRONMENTAL EFFECTS OF DRILLING ONSHORE OIL AND GAS WELLS AND STUDYING THE SITE RESTORATION

By

Khaled Gamal Mohamed Abdel Razek B.SC. Science (Chemistry), Ain Shams University, 1994 Master in Environmental Sci., Ain Shams University, 2003

This Thesis Towards a Ph.D. Degree in Environmental Science Has Been Approved by:

Name	Signature
Prof. Dr. Mohamed Gharib El-Malky Emeritus Prof. of Basic Science. Institute of Environmental Studies and Research - Ain Shams University	
Prof. Dr. Mahmoud Ahmed Ibrahim Hewehy Prof. of Basic Science. Institute of Environmental Studies and Research - Ain Shams University	
Prof. Dr. Mahmoud Sami Yousef Prof. of geology – faculty of science – Ain Shams University	
Prof. Dr. Youssef Barakat Youssef Prof. of Petroleum chemistry Egyptian Petroleum Research Institute	
Prof. Dr. Yaser Mohamed Mahmoud Mostafa Prof. of Petroleum chemistry Egyptian Petroleum Research Institute	

ENVIRONMENTAL EFFECTS OF DRILLING ONSHORE OIL AND GAS WELLS AND STUDYING THE SITE RESTORATION

By

Khaled Gamal Mohamed Abdel Razek B.SC. Science (Chemistry), Ain Shams University, 1994 Master in Environmental Sci., Ain Shams University, 2003

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy In Environmental Science

Department of Basic Environmental Science Institute of Environmental Studies & Research Ain Shams University

Under The Supervision of:

Prof. Dr. Mohamed Gharib El-Malky

Emeritus Prof. of Basic Sciences Department Institute of Environmental Studies and Research - Ain Shams University

Prof. Dr. Mahmoud Ahmed Ibrahim Hewehy

Prof. of Basic Sciences Department Institute of Environmental Studies and Research - Ain Shams University

Prof. Dr. Youssef Barakat Youssef

Emeritus Prof. of Petroleum Chemistry - Egyptian Petroleum Research Institute.

ACKNOWLEDGEMENTS

Thanks forever for ALLAH who allowed and helped me to accomplish this work.

I would like to express my profound gratitude and appreciation to Professor Dr. Mohamed Gharib El-Malky for his meticulous supervision, suggestions, and valuable discussions. I appreciate his 'supporting student' attitude, and hope to carry it along.

My grateful Thanks to Professor Dr. Mahmoud El Hewehy, for his keen interest, guidance and patience.

I would like also to express my deepest indebted and grateful thanks to Professor Dr. Youssef Barakat for his kind, sincere and valuable co-supervision of this work.

ABSTRACT

The environmental effects of wastes (drilling muds & cuttings) generated from the drilling of onshore oil wells in southern western desert, were studied through analyses of different salts, total hydrocarbons and heavy metals. The aim was to determine their possible impacts on their environments due to disposal of these wastes.

These drilled wastes generated from the drilling of onshore wells indicated the presence of considerable amounts of salts and relatively low concentrations of leached petroleum hydrocarbons and heavy metals. The highest concentration of chlorides and sulphates were recorded in the cutting samples which reached 31.5 and 4.2 mg/g respectively..

Total and leachable hydrocarbon concentrations (after 5 and 10 days), were determined indicating that the highest value were 21.9 μ g/g and (5.88 and 31.19 μ g/l), respectively. Contrarily, the lowest values were 8.6 μ g/g and (0.91 and 1.30 μ g/l), respectively.

Seven heavy metal compounds: Ni, Ba, Cd, Cr, Pb, Ag and Zn were detected in five samples of drilling cutting wastes were collected from five active exploratory wells. Barium, Chromium, Zinc and Nickel were the abundant metals, while Cadmium was the least metal in the investigated cutting sediments of the different sites. Barium was detected in all leachable heavy metals with base water after 5 and 10 days with a concentration range from 2.6 to $7.8\mu g/g$. Silver (Ag) values were below the detectable levels except at only one station. Values of the other metals varied significantly from one station to another.

The solid wastes (drilling muds & cuttings) if properly managed can serve as raw materials for cement producing plants, bricks and expanded clay producing plants and can also be used in land restoration projects. Disposal of cuttings and drilling wastes into the onshore environment should be totally discouraged and litigated.

LIST OF TABLES	V
LIST OF FIGURES	VI
LIST OF ABBREVIATION	IX
CHAPTER 1	1
INTRODUCTION	1
AIM OF STUDY	1
HISTORY OF OIL DRILLING IN EGYPT	1
CURRENT AND FUTURE ACTIVITIES OF OIL DRILLING IN EGYPT	2
DRILLING WASTES AND ITS EFFECTS	4
SITE RESTORATION	6
CHAPTER 2	7
REVIEW OF LITERATURE	7
2.1 Objective of Drilling Oil Wells	7
2.2 Role of Drilling Mud Fluids	8
2.3 CHEMICAL COMPOSITION OF MUD	10
2.3.1 Water – Base Mud	16
Classification of Water – Based Drilling Fluids:	17
Weighting Materials	19
2.3.2 Oil Base Mud	20
2.4 CHEMICAL COMPONENTS OF DRILL CUTTINGS	22
2.5 Quantities of Mud Wastes Generated from Drilling	
OPERATIONS	23
2.6 MUD POLLUTANTS	26
2.6.1. Heavy Metals	26
2.6.2 SALTS IN MUD	29

2.6.3	. Hydrocarbons in Mud	30
2.7 E	NVIRONMENTAL CONSIDERATIONS AND WASTE MANAGEM	MENT30
2.8 C	OVERVIEW OF MUD/CUTTINGS WASTES TREATMENT	33
2.8	8.1 Dewatering	34
2.8	8.2 Thermal Desorption	35
2.8	8.3 Solidification/Stabilization	37
2.9 D	PRILL SITE RESTORATION	39
2.9	9.1 Land Application	43
2.9	9.2 Burial	48
2.10	REGULATIONS RELATED TO DRILLING OPERATIONS IN EGY	YPT AND
Wor	LDWIDE	50
CHAP	ΓER 3	59
MATE	RIALS AND METHODS	59
3.1.	STUDY AREAS	59
3.2.	MATERIALS AND SAMPLING	61
3.3.	WATER BASED ANALYSIS	64
3.4.	DRILL CUTTING ANALYSIS	66
3.4	4.1 Concentrations Determination of Some Salts In Cutting	Samples 67
3.4	4.1.1 Soluble Chloride and Sulfate Methodology	67
3.4	1.2. Heat Treatment of Cuttings	68
3.4	4.2.1- Moisture	68
3.4	1.2.2. Total Organic Carbon	68
3.4	1.3. Heavy Metals	69
3.4	4.3.1. Leachable Heavy Metals	69
3.4		60
	4.3.2. Complete Digested Heavy Metals	09

3.4.4.1. Leachable Hydrocarbon	70
3.4.4.2. Total Hydrocarbon	72
3.4.5. Mechanical Analysis	72
3.5. Statistical Analysis	73
CHAPTER 4	74
RESULTS	74
4.1 Analysis of Water Base Mud:	75
4.1.1. Physical and Chemical Properties of Water Base Mud	Used for
Leachable Heavy Metals And Hydrocarbon	75
4.2. Drill Cuttings	76
4.2.1. Concentrations of Some Salts in Studied Cuttings:	76
4.2.2. Heat Treatment of Cuttings	79
4.2.2.1. Recorded Level of Moisture	79
4.2.2.2. Recorded Level of Organic Matter	79
4.2.3. Mechanical Analysis	82
4.2.3.1. Distribution of Gravel, Sand and Mud:	82
4.2.3.2. Structure of Grain in Cuttings	86
4.2.4. Heavy Metals	90
4.2.4.1. Recorded Level of Complete Digested Heavy Metals:.	90
4.2.4.2. Leachable Heavy Metals	91
4.2.5 Hydrocarbons	110
4.3. Statistical Analysis	114
CHAPTER 5	117
DISCUSSION	117
5.1 Heavy Metals	117

5.2 Hydrocarbons	121
5.3 Salts	121
5.4 Quantities of Drilling Wastes	122
5.5 REGULATIONS	123
5.6 Drill Site Restoration	124
5.6.1 Waste Pits	124
5.6.2 Waste Management	127
Pitless or Closed Loop Drilling	130
SOLIDIFICATION OF DRILLING WASTES	131
Burial	132
5.6.3 SITE RESTORATION CASE STUDIES	134
CASE STUDY No.1: RESTORATION OF WELL SITE DRILLED IN	N RECLAIMED
LAND	135
CASE STUDY No.2: RESTORATION OF WELL SITE DRILLED IN	N DESSERT
Area	140
CHAPTER 6	145
SUMMARY AND CONCLUSION	145
SUMMARY	145
CONCLUSION	148
REFERENCES	150
الملخص العربي	1
المستخلص	1

List of Tables

TABLE 3-1: SAMPLES LOCATION	61
TABLE 4-1: PHYSICAL AND CHEMICAL PROPERTIES OF THE WATER BASED	
USED FOR LEACHABLE HEAVY METALS AND HYDROCARBON	76
TABLE 4-2: CHLORIDE AND SULFATE CONCENTRATION AT THE CUTTING	
SEDIMENT OF THE STUDIED SITES	77
TABLE 4-3: THE PERCENTAGE OF GRAVEL, SAND AND MUD IN THE SAMPLE	ES 83
Table 4-4: Total and leachable Nickel (Ni)	92
Table 4-5: Total and leachable Silver (AG)	94
Table 4-6: Total and leachable Zinc (Zn)	97
Table 4-7: Total and leachable Lead (Pb)	99
Table 4-8: Total and leachable Chromium (Cr)	. 103
Table 4-9: Total and leachable Barium (Ba)	. 106
Table 4-10: Total and leachable Cadmium (Cd)	.110
Table 4-11: Total Hydrocarbon level ($\mu G/G$) at the cuttings of T	ГНЕ
SELECTED CUTTINGS	.112
Table 4-12: Leachable Hydrocarbon level ($\mu G/L$) at the cuttings	S OF
THE SELECTED CUTTINGS AFTER 5 AND 10 DAYS	.113
Table 4-13: Correlation coefficient between some physico-chem	ICAL
VARIABLES AND HEAVY METALS, HYDROCARBON OF THE STUDI	IED
CUTTING SEDIMENTS	115

List of Figures

Figure 3-1: Photo (1)"Drilling Wastes"6	62
Figure 3-2: Photo (2))"Drilling Wastes"6	63
Figure 3-3: Photo (3)"Drilling Wastes"	63
Figure 3-4: Photo (4)" Drilling Wastes"6	64
Figure 4-1: Cocentration of Chloride in Cuttings Samples	78
FIGURE 4-2: COCENTRATION OF SULFATE IN CUTTINGS SAMPLES	78
FIGURE 4-3: VARIATION OF MOISTURE, ORGANIC MATTER AND ASH CONTENT OF	
S1	80
Figure 4-4: Variation of moisture, organic matter and ash content of	
S2	80
Figure 4-5: Variation of moisture, organic matter and ash content of	
S3	81
Figure 4-6: Variation of moisture, organic matter and ash content of	
S4	81
Figure 4-7: Variation of moisture, organic matter and ash content of	
S5	82
Figure 4-8: Distribution of gravel, sand and mud in S1	83
Figure 4-9: Distribution of gravel, sand and mud in S2	84
Figure 4-10: Distribution of gravel, sand and mud in S3	84
Figure 4-11: Distribution of gravel, sand and mud in S4	85
Figure 4-12: Distribution of gravel, sand and mud in S5	85
Figure 4-13: Grain size distribution of cuttings at studied sites	86
Figure 4-14: Grain size distribution of cuttings at station-2	87
Figure 4-15: Grain size distribution of cuttings at station-3	88
Figure 4-16: Grain size distribution of cuttings at station-4	89
Figure 4-17: Grain size distribution of cuttings at station-59	90

Figure 4-18: Total Concentration of Nickel in cuttings samples93
FIGURE 4-19: CONCENTRATION OF LEACHABLE NICKEL (NI) WITH DISTILLED
WATER / 0.1N HCL AFTER 10 DAYS93
Figure 4-20: Leachable Nickel (Ni) level in the cuttings samples after 5
AND 10 DAYS, USING WATER BASE94
FIGURE 4-21: TOTAL CONCENTRATION OF SILVER IN CUTTINGS SAMPLES95
FIGURE 4-22: CONCENTRATION OF LEACHABLE SILVER (AG) WITH DISTILLED
WATER / 0.1N HCL AFTER 10 DAYS96
FIGURE 4-23: LEACHABLE SILVER (AG) LEVEL IN THE CUTTINGS SAMPLES AFTER
5 AND 10 DAYS, USING WATER BASE96
FIGURE 4-24: TOTAL CONCENTRATION OF ZINC IN CUTTINGS SAMPLES98
FIGURE 4-25: CONCENTRATION OF LEACHABLE ZINC (ZN) WITH DISTILLED
WATER / 0.1N HCL AFTER 10 DAYS98
FIGURE 4-26: LEACHABLE ZINC (ZN) LEVEL IN THE CUTTINGS SAMPLES AFTER 5
AND 10 DAYS, USING WATER BASE99
Figure 4-27: Total Concentration of Lead (Pb) in cuttings samples $\dots 100$
FIGURE 4-28: CONCENTRATION OF LEACHABLE LEAD (PB) WITH DISTILLED
WATER / 0.1N HCL AFTER 10 DAYS
FIGURE 4-29: LEACHABLE LEAD (PB) LEVEL IN THE CUTTINGS SAMPLES
AFTER 5 AND 10 DAYS, USING WATER BASE
FIGURE 4-30: TOTAL CONCENTRATION OF CHROMIUM (CR) IN CUTTINGS
SAMPLES 104
FIGURE 4-31: CONCENTRATION OF LEACHABLE CHROMIUM (CR) WITH
DISTILLED WATER / 0.1N HCL AFTER 10 DAYS104
FIGURE 4-32: LEACHABLE CHROMIUM (CR) LEVEL IN THE CUTTINGS
SAMPLES AFTER 5 AND 10 DAYS, USING WATER BASE
FIGURE 4-33: TOTAL CONCENTRATION OF BARIUM (BA) IN CUTTINGS
SAMPLES

FIGURE 4-34: CONCENTRATION OF LEACHABLE BARIUM (BA) WITH
DISTILLED WATER / 0.1N HCL AFTER 10 DAYS
FIGURE 4-35: LEACHABLE BARIUM (BA) LEVEL IN THE CUTTINGS SAMPLES
AFTER 5 AND 10 DAYS, USING WATER BASE
Figure 4-36: Total Hydrocarbon level ($\mu G/G$) in the cuttings
SAMPLES 112
FIGURE 4-37: LEACHABLE HYDROCARBON CONCENTRATION IN THE CUTTINGS
OF SELECTED SITES AFTER 5 AND 10 DAYS
FIGURE 5-1: PHOTO SHOWS "OVERVIEW OF RESTORED WELL SITE LOCATION"
FIGURE 5-2: PHOTO SHOWS "RESTORED WELL SITE LOCATION AND THE LAND
TENANT"
FIGURE 5-3: PHOTO SHOWS "REINFORCED ACCESS ROAD BY USING DRIED
CUTTINGS"
Figure 5-4: Photo shows "from left, the land tenant,
ENVIRONMENTAL SPECIALIST, REPRESENTATIVE OF LAND
RECLAMATION AUTHORITY AND REPRESENTATIVE OF OIL COMPANY"
140
FIGURE 5-5: PHOTO SHOWS "ENVIRONMENTAL SPECIALIST AND
REPRESENTATIVE OF OIL COMPANY"
FIGURE 5-6: PHOTO SHOWS "DRIED CUTTINGS CAN BE USED FOR ROADS
IMPROVED OR BACKFILLED AGAIN INTO PIT "
FIGURE 5-7: PHOTO SHOWS "REINFORCED ACCESS ROAD BY USING DRIED
CUTTINGS" 144

List of Abbreviation

APHA American Public Health Association

API American Petroleum Institute

ASTM American Society for Testing and Materials

E&P Exploration and Production

EC Electrical Conductivity

EGPC Egyptian General Petroleum Corporation

EIA Energy Information Adminstration

EPI Environmental Performance Indicators

EPA Environmental Protection Agency

EPI Environmental Performance Indicators

GOS Gulf of Suez

IWMP Integrated Waste Management Plan

OBM Oil Base Mud

Offshore Marine Activities

OGP Oil & Gas Producers

Onshore Activities on Land

PAHs Polycyclic Aromatic Hydrocarbons

PCA Principal Correspondence Analysis

RCRA Resource Conservation and Recovery Act

List of Abbreviation

S/S Solidification/Stabilization

SAR Sodium Adsorption Ratio

SPIGEC Saskatchewan Petroleum Industry Government

Environment Committee

TDU Thermal Desorption Units

TFM Total Fluid Management

TPH Total Petroleum Hydrocarbon

USEPA United States Environmental Protection Agency

USCOTA U.S. Congress Office of Technology Assessment

W.D. Western Desert

WBM Water Base Mud

CPCB Central Pollution Control Board