HbA\c as a Predictor of the Severity of Systolic Heart Failure in non-Diabetic Patients

Thesis

Submitted in Partial Fulfillment for Master Degree In Cardiovascular Medicine

Presented by

Mohamed Anwar Tawfic

M.B.B.Ch.

Under Supervision of

Prof. Dr/ Ihab Mohamed Attia

Professor of Cardiology
Faculty of Medicine - Ain Shams University

Dr / Mohamed Abd-Elkader Saleh

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Introduction	1
Aim of the Work	٣
Review of Literature	
Epidemiology of Heart Failure	ξ
Pathogenesis of Heart Failure	V
Heart Failure in Diabetes Mellitus	17
Glycated Hemoglobin and Heart Failure	٣١
Patients and Methods	٣٩
Results	
Discussion	V Y
Summary	۸۱
Conclusion and Recommendation	Λ ξ
References	Λο
Appendices	I
Arabic Summary	

List of Abbreviations

ACC	American College of Cardiology
ACE	Angiotensin Converting Enzyme
AF	Atrial Fibrillation
AGE	Advanced Glycosylation End product
AHA	American Heart Association
ARBs	Angiotensin II Receptor Blockers
BBB	Bundle Branch Block
BIPS	Bezafibrate Infarction Prevention Study
BMI	Body Mass Index
BNP	B-type Natriuretic Peptide
bpm	Beat Per Minute
CAD	Coronary Artery Disease
CHD	Coronary Heart Disease
CHF	Congestive Heart Failure
CV	Cardiovascular
DM	Diabetes Mellitus
DYS	Dyslipidemia
ECG	Electrocardiogram
EF	Ejection Fraction
EMME	Eastern Mediterranean and Middle East
FDA	Food and Drug Administration
FFA	Free Fatty Acid
FH	Family History
FPG	Fasting Plasma Glucose
FS	Fractional Shortening
Hb	Hemoglobin
HbA\c	Glycated Hemoglobin
HF	Heart Failure
HR	Heart Rate
Hrs	Hours
HTN	Hypertension
IDF	International Diabetes Federation
IFG	Impaired Fasting Glucose
IGT	Impaired Glucose Tolerance

IHD	Ischemic Heart Disease
LBBB	Left Bundle Branch Block
LV	Left Ventricle
LVEDD	Left Ventricular End Diastolic Dimension
LVEF	Left Ventricular Ejection Fraction
LVESD	Left Ventricular End Systolic Dimension
LVSD	Left Ventricular Systolic Dysfunction
LVWMI	Left Ventricular Wall Motion Index
MR	Mitral Regurgitation
NHLBI	The National Heart, Lung, and Blood Institute
NO	Nitric Oxide
NPP	Negative Predictive Value
NYHA	New York Heart Association
OGTT	Oral Glucose Tolerance Test
PAS	Periodic Acid-Schiff
PPAR-gamma	Peroxisome Proliferator-Activated Receptor-gamma
PPV	Positive predictive value
RAAS	Renin-Angiotensin-Aldosterone System
RBBB	Right Bundle Branch Block
SD	Standard Deviation
SNS	Sympathetic Nervous System
SOLVD	Studies of Left Ventricular Dysfunction
SPSS	Statistical Package for Social Science
TNF-alpha	Tumor Necrosis Factor alpha
TZDs	Thiazolidinediones
VEGF	Vascular Endothelial Growth Factor
VOY	Oxygen consumption
WHO	World Health Organization

List of Tables (of Review)

Table No.	Title	Page
	No.	
Table (1): The prevalent without LV	nce of DM in populat	
Table ($^{\checkmark}$): The prevaler with and w	nce of DM in general	1 1

List of Tables *(of Results)*

Table	No. Title	Page
	No.	
Table ('):	Comparison between the two regarding the age	
Table (*):	Comparison between the two regarding the sex	groups ٤٧
Table (*):	Comparison between the two regarding BMI	
Table (\$):	Comparison between the two regarding controlled and unco hypertension	ntrolled
Table (*):	Comparison between the two regarding dyslipidemia	groups
Table ([†]):	Comparison between the two regarding smoking	groups or
Table (V):	Comparison between the two regarding the past history CAD	
Table (^):	Comparison between the two regarding NYHA classification	groups ° ٤
Table (4):	Comparison between the two regarding the fasting blood glucos	•
Table (' '):	Comparison between the two regarding the heart rate	
Table (' '):	Comparison between the two regarding the prevalence of AF	
Table (\ Y):	Comparison between the two regarding QRS duration (ms)	

Table (' ''):	Comparison between the two groups regarding the presence of BBB	٦.
Table (\ \ \ \ \ :):	Comparison between the two groups regarding LVESD (mm) on admission	٦١
Table (' °):	Comparison between the two groups regarding %FS on admission	٦٢
Table (۱٦):	Comparison between the two groups regarding EF by Teichholz on admission	٦٣
Table (۱ ۷):	Comparison between the two groups regarding EF by Simpson's method on admission	٦٤
Table (\ \ \ \):	The difference between the echocardio- graphic data obtained on admission and that obtained after 7 months follow-up.	٥.
Table (\4):	Comparison between the two groups regarding re-hospitalization	٦٦
Table (۲۰):	Showing the statistical analysis by Pearson's correlation method	て人
Table (۲۲):	showing the result of ROC curve between	
	HbA\c and severity of HF based on EF	
	obtained by Simpson's method	۷١

List of Figures (of Review)

Figure No. Title Po		
Figure (1): The S	NS and abnormalities of glucose	; ~\

List of Figures (of Results)

Title Figure No. **Page** No. Figure (1): Comparison between the two groups Figure (Y): Comparison between the two groups regarding controlled and uncontrolled Figure ($^{\circ}$): Comparison between the two groups regarding the heart rate. or Figure (ξ): Comparison between the two groups regarding the prevalence of AF..... Figure (°): Comparison between the two groups regarding QRS duration (ms). Figure (\(\famble\): Comparison between the two groups regarding LVESD (mm) on admission. Figure (Y): Comparison between the two groups Figure (Λ): Comparison between the two groups regarding EF by Teichholz on admission.

Figure (٩):	Comparison between the two groups regarding EF by Simpson's method on admission.	7£
Figure (\.):	Comparison between the two groups regarding re-hospitalization.	3٧
Figure (۱۱):	Correlation between BMI and HbA\c by Pearson's correlation method	ጚለ
Figure (۱۲):	Correlation between LVESD on admission and HbA\c by Pearson's correlation method	ፕለ
Figure (۱۳):	Correlation between EF by Simpson's method on admission and HbA\c by Pearson's correlation method	५१
Figure (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Correlation between heart rate and HbA\c by Pearson's correlation method	५१
Figure (10):	Correlation between QRS duration and HbA\c by Pearson's correlation method	Y•
Figure (17)	: showing sensitivity and specificity of HbA\c in HF	Y1
	: showing sensitivity and specificity of	٧٢

Acknowledgement

First of all and above all great thanks to ALLAH.

It is a great honor for me to express my deepest gratitude, extreme thankfulness and deep appreciation to **Prof. Dr/ Ihab**Mohamed Attia, Professor of Cardiology, Faculty of Medicine Ain Shams University for his generous help, continuous guidance and supervision, kind encouragement and valuable advice throughout the work. Under his supervision I had the honor to complete this work.

I would like to express my deepest gratitude and special thanks to **Dr/ Mohamed Abd-Elkader Saleh**, Lecturer of Cardiology, Faculty of Medicine - Ain Shams University for his close observation, generous guidance, effective help and valuable supervision.

I would like also to thank my patients and can't forget to extend thanks to my Parents and everyone who helped me to accomplish this work.

Introduction

Hyperinsulinemia, impaired glucose tolerance (IGT), and insulin resistance are risk factors for developing heart failure (HF), independent of diabetes mellitus (DM) and other established risk factors (*Ingelsson et al.*, **...**).

Dysglycemia, in the absence of DM, is common in HF. In a substudy involving TTT patients with New York Heart Association (NYHA) class II–IV HF, TY% had documented DM. Of the 'non-diabetics', YY% met diagnostic criteria for DM (newly diagnosed during the study), YY% had impaired fasting glucose (IFG) and TE% had elevated plasma insulin concentrations and insulin resistance (Suskin et al., Y···).

The presence of insulin resistance, hyperinsulinemia, or IFG is associated with lower functional capacity and more severe symptoms. Reduced peak oxygen consumption (VO^Y) is an independent predictor of insulin resistance in non-diabetic patients with HF (Swan et al., 1997).

Insulin resistance occurs in HF of both ischemic and nonischemic etiology, but why it is so prevalent is not fully understood. Many mechanisms have been suggested, including sympathetic nervous system (SNS) overactivity, sedentary lifestyle, endothelial dysfunction, loss of skeletal muscle mass, and influence of cytokines such as tumor necrosis factor alpha (TNF-alpha) and leptin on peripheral insulin sensitivity (Witteles and Fowler, Y··A).

Patients with HF have persistent activation of their SNS. Excessive activation of the SNS may lead to insulin resistance. In healthy subjects, acute SNS activation reduces insulininduced stimulation of muscle glucose uptake by Yo'. (Scherrer and Sartori, 1999). Furthermore, stimulation of β -receptors increases lipolysis resulting in raised plasma free fatty acid (FFA) levels (Schiffelers et al., "..."). FFAs impair insulinmediated glucose disposal in human skeletal muscle and can gluconeogenesis, further stimulate hepatic potentiating hyperglycemia. Catecholamines have also been shown to inhibit pancreatic insulin secretion in humans and stimulate hepatic and glycogenolysis, further gluconeogenesis worsening hyperglycemia (*Nonogaki*, *···; *Boudina and Abel*, *··*).

Aim of the Work

To study the association between HbA\c levels and the severity of systolic heart failure among non-diabetic patients during a follow-up period of \(\cdot \) months.

Epidemiology of Heart Failure

Congestive heart failure (CHF) is an increasing, global epidemic, particularly in the elderly, that results in significant health care expenditure, disability, and mortality. Coronary artery disease (CAD), hypertension, and diabetes mellitus are the major etiologic risk factors. Ironically, advances in the treatment of coronary artery disease and acute ischemic syndromes, which have saved lives, have resulted in a growing population of survivors with left ventricular dysfunction who are destined to develop the heart failure syndrome. Preventive measures that have evolved over the last Yo years, including hypertension management, have not reduced the incidence of heart failure. Congestive heart failure is the leading indication for hospitalization in the United States for patients older than vears. Heart failure is a chronic disease amenable to an intensive multidisciplinary care model (disease management program) designed to prevent hospital admissions through patient education, focused outpatient initiatives, and adherence guidelines that management should enhance effectiveness and improve quality of life (Garg et al., 1997).