

Clinical Utility of Serum Glycodelin as a Novel Marker for Ovarian Cancer

Thesis Submitted by

Mohamed Samir Abd-Allah Mahmoud Hegab

(M.Sc. in Chemistry 2009)

In the Fulfillment of the requirements for a (Ph. D)
degree in Analytical Chemistry
Supervised by

Prof. Dr. Ibrahim H. A. Badr

Professor of Analytical Chemistry
Faculty of Science, Ain Shams University

Prof. Dr. Helmy Matawe El Sayed

Professor of Gynecology and Obstetrics Faculty of Medicine, Ain Shams University

Dr. Hala Abdel Al Ahmed

Lecturer of Clinical and Chemical Pathology
Faculty of Medicine, Ain Shams University
Ain Shams University
Faculty of Science
Chemistry Department
2013

First of all, all gratitude is due to **Allah** for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my deep gratitude to **Prof. Dr.**Ibrahim Hosiny Ali Badr. Professor of Analytical Chemistry,
Faculty of Science, Ain shams University. I am greatly indebted to
him for suggesting and planning the subject, supervising the whole
work, reading and criticizing the manuscript. I will never forget him
unlimited help, continuous support, kind encouragement,
constructive criticism and wise guidance. To her words of praise are
not sufficient and I am really greatly indebted to him.

Also I am greatly indebted to **Prof Dr. Helmy Matawe El Sayed** Professor of Gynecology and Obstetrics, Faculty of
Medicine, Ain Shams University, for his helpful guidance, valuable
advice, meticulous care, great effort and generous help in this work.

I wish also to express my utmost thanks to **Dr. Hala Abdel Al Ahmed,** lecture of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her generous help and support throughout every step in this work.

Finally, I would like to express sincerely my gratitude to my mother, my father, my wife and my son for their immense help, tolerance and support and to them I dedicate this work.

Mohamed hegab

Clinical Utility of Serum Glycodelin as a Novel Marker for Ovarian Cancer

Thesis Submitted by

Mohamed Samir Abd-Allah Mahmoud Hegab

(M.Sc. in Chemistry 2009)

Benha University

In the Fulfillment of the requirements for a (Ph. D) degree in Analytical Chemistry

Ain Shams University
Faculty of Science
Chemistry Department
2013

List of Contents

Title	Page
INTRODUCTION	1
SUBJECTS AND METHODS	63
RESULTS	79
DISCUSSION	94
Summary	100
References	105
الملخص العربي	1
الطالب / محمد سميرعبد الله محمود حجاب	1
Arabic summary	

List of Tables

Table No	Title	Page
	HO Histological Classification	
	athological Classification of Ova	
Table (3): T	N M Classification of Ovarian	Tumors 18
Table (4): St	aging of Ovarian Cancer	19
Table (5): Gi	rading of Ovarian Cancer	20
	escriptive statistics of the demo meters in the different studied g	
regarding the	Statistical comparison between e studied parameters using Wi	lcoxon's Rank Sum
different sub	Descriptive and comparative groups of ovarian cancer patienest	nts using Wilcoxon's
	orrelation analysis between glyc meters using Sperman's rank co	
, ,	Diagnostic performance of se	•

List of Figures

Figure No	o. Title Page
Figure (1): Radioimmunoassay method of glycodelin 57
Figure (2): ELISA method of glycodelin59
Figure (3): In Situ Hybridization method of glycodelin 62
_): Diagram showing the principle of CA-125 assay by
_	5): Comparison between all studied groups as regards and Glycodelin
): Comparison between grades as regards CA-125 and n
_	7): Linear regression analysis showing Correlation CA125 and Glycdelin among malignant group 89
	8): Linear regression analysis showing Correlation CA125 and Glycdelin among benign group90
_	9): ROC curve analysis showing the diagnostic ace of GD for discriminating benign from control 91
performa	10): ROC curve analysis showing the diagnostic nce of GD for discriminating malignant from those
performa	11): ROC curve analysis showing the diagnostic ace of GD for discriminating grade 3+4 from those

List of Abbreviations

 α Alph

β Beta

AFP Alpha fetoprotein

AJCC American Joint Committee on Cancer

AML Acute myeloid leukemia

AUC Area under curve

AUP α -uterine protein

BRCA Breast cancer susceptibility gene 1

BRCA Breast cancer susceptibility gene 2

brp-39 Breast regressing protein 39

bp (base-pair)

bpy 2,2-bipy

CA-125 Cancer antigen 125

CA15-3 Carbohydrate antigen15-3

CA19-9 Carbohydrate antigen19-9

CASA Cancer associated serum antigen

CAG-2 chorionic α2-microglobulin

CBC Complete blood picture

CD Cluster differentation

cDNA Complementary deoxyribonucleic

acid

CEA Carcinomabryonic antigen

CT Computed Tomography

CAG chorionic α2-globulin

DNA Deoxyribonucleic acid

ECLIA Electrochemiluminescence

immunoassay

EDTA Ethylene Diamine Tetra actetic Acid

ELISA Enzyme linked immunsorbant assay

ER Estrogen receptor

EGFR epidermal growth factor receptor

ErbB-1 epidermal growth factor receptor B-1

FIGO International Federation of

Gynecology and Obstetrics

FISH Flourescent In Situ Hybridization

GdA glycodelin-A

GdC glycodelin-C

GdF glycodelin-F

GdS glycodelin-S

HC Human Cartilage glycol-protein-39

gp39

HCG Human chorionic gonadotropin

HER2 Human epidermal growth factor

receptor 2

HIV Human Immunodeficiency Virus

hk Human kallikrein

IAP Immunosuppressive acid protein

IL interleukin

IR Interquartile range

IVF In Vitro Fertilization

kDa Kilo Daltons

LDH Lactate dehydrogenase

LGLs large granular lymphocytes

LPA Lysophosphatidic acid

mAb monoclonal antibodies

MCF-7 Macrophage colony factor

MCS-F Macrophage colony stimulating

factor

MRI Magnetic Resonance Imaging

MLH Mutl-homolog gene

MSH Melanocyte- Stimulating harmone

MMAC Multiply accumulates gene

mRNA Messenger ribonucleic acid

n Number

NAD β-nicotinamide adenine dinucleotide

NADH Reduced β - nicotinamide adenine

dinucleotide

NK natural killer

PAEP progesterone-associated endometrial

protein

PC Prostate carcinoma

P53 tumor suppressor gene

PCOS Polycystic ovarian syndrome

α2-PEG pregnancy-associated α2-

microglobulin

PCR Polymerase chain reaction

PEP progesterone-associated endometrial

protein

PET Positron emission tomography

PMS Premenstrual Dysphoric Disorder

PP14 placental protein 14

PR Progesterone receptor

PTEN Phosphatase and Tenis Homolog

gene

RIA Radioimmunoassay

RNA Ribonucleic acid

r_s Spearman's Rank correlation

coefficient

RTK Receptor tyrosine kinase

RT-PCR Reverse transcriptase polymerase

chain reaction

ROC Receiver operating characteristic

RU: ruthenium

SD Standard deviation

SSO,S Sequence -specific oligonucleotides

TAG Tumor associated glycoprotein

TATI Tumor- associated trypsin inhibitor

TEP Total Extraperitoneal Inguinal hernia

repair gene

T.N.M Tumor Size, Node Involvement,

Metastasis Status

TPA tripropylamine

U/S Ultrasound

WHO World Healthy Organization

Referees Decision

Title: "Clinical Utility of Serum Glycodelin as a Novel Marker for Ovarian Cancer"

Presented by: Mohamed Samir Abd Allah Mahmoud Hegab

Referees

	Name	Position	Signature
1	Prof. Dr./ Raga El Sheikh Sheb	Professor of Analytical chemistry,Faculty of Science, Zagazig University Professor of	
2	Prof. Dr. / Ibrahim Hosiny Ali Badr	Professor of Analytical chemistry, Faculty of Science, Ain shams University	
3	Ass.Prof. Dr./ Nermine Helmy Mahmoud	Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University.	

Date of Discussion:

Degree of Discussion:

Head of Chemistry Department

Prof. Dr. Maged Shafik Auntonious Nakhla

INTRODUCTION

Ovarian cancer is considered the most challenging gynecological malignancy as it represents the fifth most frequent female cancer type and the fourth most frequent cause of death from cancer (*Hogdall et al., 2003*). Approximately 70% of ovarian cancer is diagnosed in an advanced stage and only 35% of patients survive for 5 years, with mortality rate largely unchanged for many years (*Crijns et al., 2009*).

CA- 125 was the first tumor marker available for detection of ovarian cancer but the major problem is its poor sensitivity and specificity as it is elevated in only 40% - 50% of patients with stage I and II ovarian cancer and can be detected also in benign conditions as pregnancy, endometriosis, ovarian cyst and liver cirrhosis (*Dupont et al.*, 2004).

Glycodelin is the major lipocalin protein of the reproductive axis. Glycodelin has many immunosuppressive, contraceptive and morphogenic properties (*Alok and Karande*, 2009). Glyodelin has by many names in the literature including placental protein 14 (PP14), chorionic α 2-microglobulin (CAG-2), progesterone-associated endometrial protein (PEP), and pregnancy-associated α 2-microglobulin (α 2-PEG) (*Yeung et al.*, 2009). Glycodelin had been originally purified from human term placenta and its adjacent membranes, and it was thought to be pregnancy specific. Because it was evident, that human endometrium was its major source, the name progesterone-

associated endometrial protein was suggested (*Alok and Karande*, 2009). However, Glycodelin is not exclusive to the endometrium as it was detected in the normal human ovary and was localized to areas of stromal cell condensation in ovarian cortex, theca interna and the granulosa in the follicular phase, and to the theca interna of the corpus luteum and luteinized granulosa cells, corpus albicans and the Leydig cells of the ovarian hilus in the luteal phase (*Bersinger et al.*, 2009).