

Mathematical Modeling for Electric Arc Furnace Refining Stage of Low Carbon Flat Steel Grades

By

Mohamed Mahmoud Abd-Alla Elkoumy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
In
Metallurgical Engineering

Mathematical Modeling for Electric Arc Furnace Refining Stage of Low Carbon Flat Steel Grades

By

Mohamed Mahmoud Abd-Alla Elkoumy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In Metallurgical Engineering

Under the Supervision of

Prof. Dr. Iman El-Mahallawi

(Thesis Main Advisor)
Dept. of Mining, Petroleum and
Metallurgy, Faculty of Engineering,
Cairo University

Prof. Dr. Ayman M. Fathy

(Advisor)
Process and Quality Manager
Al Ezz Flat Steel Company

Prof. Dr. Hafiz A. Ahmed

(Advisor)
Dept. of Mining, Petroleum and
Metallurgy, Faculty of Engineering,
Cairo University

Prof. Dr. Mohamed I. El-Anwar

(Advisor) Mechanical Engineering Department National Research Center

Mathematical Modeling for Electric Arc Furnace Refining Stage of Low Carbon Flat Steel Grades

By

Mohamed Mahmoud Abd-Alla Elkoumy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
Metallurgical Engineering

Approved by the Examining Committee

Prof. Dr. Iman El-Mahallawi

(Thesis Main Advisor)

Department of Mining, Petroleum and Metallurgy, Faculty of Engineering, Cairo University

Prof. Dr. Hafiz A. Ahmed

(Advisor)

Department of Mining, Petroleum and Metallurgy, Faculty of Engineering, Cairo University

Prof. Dr. Ayman M. Fathy

(Advisor)

Process and Quality Manager, Al Ezz Flat Steel Company

Prof. Dr. Mohamed I. El-Anwar

(Advisor)

Mechanical Engineering Department, National Research Center

Prof. Dr. Saad Megahed El-Raghy

(Internal Examiner)

Department of Mechanical Engineering, Faculty of Engineering, Banha University

Prof. Dr. Osama Ezat Abd El-Latif

(External Examiner)

Department of Mechanical Engineering, Faculty of Engineering, Banha University

Engineer Name: Mohamed Mahmoud Abd-Alla Elkoumy

Date of Birth: 13/04/1980 **Nationality:** Egyptian

E-mail: Mohamedelkomy1980@gmail.com

Phone: 01221136065

Address: 4 Zo El-Fakar Street, Helwan, Cairo

Registration Date: 01/10/2012 **Awarding Date:** / /2018

Degree: Doctor of Philosophy **Department:** Metallurgical Egineering

Supervisors:

Porf. Iman El-Mahallawi (Thesis Main Advisor)

Porf. Hafiz A. Ahmed (Advisor) Porf. Ayman M. Fathy (Advisor)

Process and Quality Manager, Al Ezz Flat Steel

Porf. Mohamed I. El-Anwar (Advisor)

Mechanical Engineering Department, National Research Center

Examiners:

Porf. Iman El-Mahallawi (Thesis main advisor)
Porf. Hafiz A. Ahmed (Advisor)
Porf. Ayman M. Fathy (Advisor)

Process and Quality Manager, Al Ezz Flat Steel

Porf. Mohamed I. El-Anwar (Advisor)
Mechanical Engineering Department, National Research Center
Prof. Saad Megahed El-Raghy (Internal examiner)
Department of Mining, Petroleum and Metallurgy, Faculty of Engineering,

Department of Minning, renoleum and Metanurgy, Faculty of Engineering

Cairo University

Prof. Osama Ezat Abd El_Latif (External examiner)
Department of Mechanical Engineering, Faculty of Engineering,

Banha University

Title of Thesis:

Mathematical Modeling for Electric Arc Furnace Refining Stage of Low Carbon Flat Steel Grades

Key Words:

Mathematical Modeling; Electric Arc Furnace; Refining Stage of Low Carbon; Flat Steel Grades

Summary:

The current study aims at modeling of the very effective Electric Arc Furnace (EAF) refining stage to understand the dynamics of the process which affects the consumptions of the EAF. The study uses 3D computational fluid dynamic models to analyze the melt flow and heat profiles inside the electric arc furnace. The model investigates the effect of changes in metallurgical thermo-physical parameters and operating conditions on steel velocity during waiting and arcing time. The investigated parameters include slag thickness, and thermo-physical properties of molten steel at different chemical compositions and temperature ranges.

Acknowledgement

I would like to express my deep appreciation and respects to my supervisors Prof. Dr Hafiz Abd Elazeem, Prof. Dr Ayman Mohamed Fathy, Prof. Dr Iman El-Mahallawi, and Prof. Dr Mohamed El-Anwar.

My thanks and deep gratitude, are also to Prof. Dr Gamal Mohamed Megahed for his continuous guidance, encouragement, unlimited support, and valuable discussions during the course of this work.

Deep thanks are due to EFS management team and staff members for their unlimited help.

Dedication

This PHD Thesis is dedicated to the soul of my father who died on Friday 14th of August 1998 & for long life to My Mother and Sisters

Cairo, 1st of March 2018

Table of Contents

Acknowled	gement	i
Dedication .		ii
Table of Co	ontents	iii
List of Figu	ıres	vi
List of Tabl	les	viii
Nomenclatu	ure	ix
Abstract		xii
Chapter 1:	Introduction	1
1.1.	Motivation	
1.2. Over	view of steelmaking by EAF process	
1.3.	Aim of study	
1.4.	Thesis structure	
	Literature Survey	
-	duction	
	Fining stage process description fining stage chemical reactions	
	fining stage slag – melt interactions	
	ectric arc furnace design	
	ted work	
	e metallurgical processes during refining stage	
	ermodynamic analysis	
2.2.3. Co	omputational model	15
2.3. Sumr	mary	16
2.4. Aim	of work	17
Chapter 3:	Research Methodology	18
_	modynamic analysis of the refining stage	
	rimental methods	
_	esign of tailored heats	
	easuring methods	
	easurement tools	
3.2.4. Ste	eel composition off line analysis	23
3.2.5. Sla	ag composition off line analysis	24

3.3. Finite volume modeling using CFD	24
Chapter 4: Metallurgical Mathematical Model Results	25
4.1. Thermodynamic equations based on full scale plant data	
4.1.1. Steel melt characteristics	
4.1.2. Slag – melt interaction	28
4.1.3. Slag density prediction	32
4.2. Results obtained from the experimental trials	33
4.2.1. Effect of carbon additions on DRI recovery	33
4.2.2. Effect of specific carbon addition on steel melt yield	36
4.2.3. Effect of final refining carbon content on % yield	38
4.2.4. Effect of tapping steel melt chemistry on LRF consumptions	39
4.2.5. Dephosphorization process during refining stage	46
4.2.6. Desulphurization process during refining stage	47
4.3. Mathematical model	49
4.3.1. Empirical model for thermodynamic	49
4.3.2. Material balance and energy balance analytical model	50
4.3.3. The verified decarburization profile during refining stage	55
Chapter 5: Computational Fluid Dynamic Numerical Model Results	57
5.1. Governing equations	57
5.1.1. Continuity equations:	57
5.1.2. Momentum equations:	57
5.1.3. Energy equation	57
5.2. Assumptions	58
5.3. Experimental conditions	58
5.4. Effect of convection method on steel melt flow at constant open	rating and
metallurgical conditions	
5.4.1. Natural convection:	62
5.4.2. Forced convection:	65
5.4.3. Model validation:	67
5.4.3. Model verification:	68
5.5. Effect of convection method on steel melt flow at variable open	_
metallurgical conditions	
5.5.1. Effect of natural convection during waiting time on steel melt flow	
5.5.2. Effect of forced convection during arcing time on steel melt flow	
Chapter 6: Discussion	87
Economic Impact of Study	90

Economic case	92
Conclusions and Recommendations	94
References	97

List of Figures

Figure 2.1: The refining process flow chart	4
Figure 2.2: The refining input – output flow chart	5
Figure 2.3: Section and plan view of electric arc furnace [2]	7
Figure 2.4: Section and plan view of electric arc furnace [3]	8
Figure 2.5: Section and plan view of electric arc furnace [3]	8
Figure 2.6: Furnace Transformer and inner diameter with furnace capacity [3]	9
Figure 2.7: Burner power with furnace capacity [3]	10
Figure 2.8: Oxygen Lance flow rate with furnace capacity [3]	10
Figure 2.9: Evolution of EAF technology 1965–2010 [5]	11
Figure 3.1: Material balance and energy balance method	20
Figure 3.2: Material balance flow charts during melt down and refining stage	21
Figure 3.3-a: Celox probe	22
Figure 3.3-b: Sidermes universal device to measure temperature, free oxygen and % C	22
Figure 3.4-a: Lollipop chemical analysis sample	23
Figure 3.4-b: Chemical analysis device spectrolab optical emission spectrometer	23
Figure 3.5: Slag analysis Bruker S4 wavelength dispersive X-ray fluorescence spectrometer	r 24
Figure 4.1: % C Measured versus Regression Equation	25
Figure 4.2: Effect of O ppm and temperature (K) on % C in steel melt	28
Figure 4.3: The reactions between steel – slag – gas	29
Figure 4.4: % C in steel melt with % Fe _x O _y in slag	30
Figure 4.5: % C in steel melt with FeO % in slag	30
Figure 4.6: Effect of % C in steel melt and % Fe _x O _y in slag on % FeO in slag	31
Figure 4.7: Effect of O ppm and % C in steel on % FeO in Slag	31
Figure 4.8: Slag density prediction with % FeO in Slag	32
Figure 4.9: Effect of % C in steel melt and % FeO on slag density	32
Figure 4.10: Effect of specific carbon additions on % yield "48 - 52 % DRI"	35
Figure 4.11: Effect of specific carbon additions on % yield "10 % DRI"	36
Figure 4.12: Effect of specific carbon additions on % yield "47 % DRI"	37
Figure 4.13: Effect of specific carbon additions on % yield "50 % DRI"	38
Figure 4.14: Effect of % C tapping in steel melt with % yield for 12-58 % DRI	39
Figure 4.15: Effect of O ppm and % C tapping on specific FeMn; kg/ton	40
Figure 4.16: Effect of O ppm and % C tapping on specific FeSi; kg/ton	40
Figure 4.17: Effect of O ppm and % C tapping on specific carbon; kg/ton	41
Figure 4.18: Effect of O ppm and % C tapping on specific lime; kg/ton	41
Figure 4.19: Effect of O ppm and % C tapping on chilling factor; C/(kg/Ton)	42
Figure 4.20: Effect of O ppm and % C tapping on power on; min	42
Figure 4.21: Effect of O ppm and % C tapping on LRF specific electrical energy kwh/ton	43
Figure 4.22: Effect of O ppm and specific FeMn; kg/ton on specific FeSi; kg/ton	43
Figure 4.23: Distribution of % C Tapping and Specific FeMn; kg/Ton on specific FeSi; kg/ton	n44
Figure 4.24: Effect of O ppm and % C on % Dephosphorization	46
Figure 4.25: Effect of O ppm and % FeO on % Dephosphorization	46
Figure 4.26: Effect of % FeO and O ppm on % Dephosphorization	47

Figure 4.27: Effect of O ppm and % C on % Desulphurization4
Figure 4.28: Effect of O ppm and % FeO on % Desulphurization48
Figure 4.29: % C in melt trend - billet production - 0.10 % C tapping55
Figure 4.30: % C in melt trend - flat production - 0.03 % C tapping50
Figure 5.1-a: Detailed views of Electric arc Furnace [122]5
Figure 5.1-b: EAF top view from FLUENT60
Figure 5.2: Contour of temperature distribution (K) for natural convection at 60 sec62
Figure 5.3: Contour of Velocity distribution (m/sec) for natural convection at 60 sec6
Figure 5.4: Contour of turbulent kinetic energy (m²/s²) for natural convection at 60 sec 64
Figure 5.5: Contour of turbulent dissipation rate (m²/s³) for natural convection at 60 sec 64
Figure 5.6: Contour of temperature (K) distribution for forced convection at 60 sec69
Figure 5.7: Contour of velocity distribution (m/sec) for forced convection at 60 sec60
Figure 5.9: Contour of turbulent dissipation rate (m²/s³) for forced convection at 60 sec6
Figure 5.10: Steel melt velocity vector plot distribution reported by Arzpeyma [117]6
Figure 5.11: Steel melt velocity vector plot distribution reported by current study
Figure 5.12: Maximum steel melt velocity variation with different slag thickness, composition
and temperature in natural convection7
Figure 5.13: Contour of velocity distribution for natural convection at 60 sec at 0.20 % C
1823 K and 0.15 m Slag Thickness
Figure 5.14: Contour of velocity distribution for natural convection at 60 sec at 0.02 % C
1973 K and 0.15 m Slag Thickness
Figure 5.15: Maximum steel melt velocity variation with different steel melt temperature
and composition in 60 Sec natural convection at 0.15 m slag thickness75
Figure 5.16: Contour of velocity distribution for natural convection at 60 sec at 0.05 $\%$ C
1923 K and 0.05 m slag thickness
Figure 5.17: Contour of velocity distribution for natural convection at 60 sec at 0.05 $\%$ C
1923 K and 0.30 m slag thickness
Figure 5.18: Maximum steel melt velocity variation with slag thickness in 60 Sec ntura
convection at 0.05 % C - 1923 K78
Figure 5.19: Maximum steel melt velocity variation with different slag thickness, composition
and temperature in forced convection79
Figure 5.20: Contour of velocity distribution for forced convection at 60 sec at 0.20 % C, 1823
K and 0.15 m slag thickness82
Figure 5.21: Contour of velocity distribution for forced convection at 60 sec at 0.02 % C, 1973
K and 0.15 m slag thickness82
Figure 5.22: Maximum steel melt velocity variation with different steel melt temperature
and composition in 60 Sec at 0.15 m slag thickness83
Figure 5.23: Contour of velocity distribution for forced convection at 60 sec at 0.05 % C, 1923
K and 0.05 m slag thickness8
Figure 5.24: Contour of velocity distribution for forced convection at 60 sec at 0.05 % C, 1923
K and 0.30 m slag thickness8
Figure 5.25: Maximum steel melt velocity variation with slag thickness in 60 Sec forced
convection at 0.05 % C - 1923 K8

List of Tables

Table 2.1: Chemical reactions in steel melt	6
Table 2.2: Reactions in slag melt	6
Table 2.3: Reactions in the gas phase	6
Table 2.4: Computational fluid dynamic model related work	.15
Table 3.1: Trials group	.19
Table 4.1: Thermo-physical properties of steel and slag	.27
Table 4.2: Typical slag composition	.30
Table 4.3: DRI eeight "ton" for 90 - 130 ton DRI, 10 - 14 % Fe as FeO	.33
Table 4.4: The DRI carbon weight "ton" for DRI carbon content "1.1 - 1.4 % C"	for
"90 - 130 ton DRI"	.33
Table 4.5: Carbon additions needed "ton" for DRI reduction "90 - 130 ton DRI"	.33
Table 4.6: Oxidized DRI trials details	.34
Table 4.7: 10 % DRI - Carbon additions trials details	.36
Table 4.8: 47 % DRI - Carbon additions trials details	.37
Table 4.9: 50 % DRI - Carbon additions trials details	.37
Table 4.10: Effect of % C tapping in steel melt with % yield for 12-58 % DRI	.38
Table 4.11: Controlled tapped parameters trials "0.26-0.28 % C"	.45
Table 4.12: Specific oxygen "Nm3 O2 / ton" used from initial melting till ini	
refining	
Table 4.13: Specific oxygen used from initial refining till end refining	.53
Table 4.14: Required refining rlectrical rnergy; kwh	.54
Table 4.15: Liquid steel and liquid slag enthalpy; kwh	.54
Table 4.16: Refining stage energy balance; kwh	.54
Table 5.1: Plant electric arc furnace melt geometry/dimensions	.60
Table 5.2: Slag pressure "kg/m s ² " calculations with temperature - % C - s	lag
thickness "m"	.61
Table 5.3: Slag weight "ton" calculations with temperature - % C - slag thickn	ess
"m"	.61
Table 5.4: Temperature measurements without 120 MW power "natural convection"	.69
Table 5.5: % C measurements without 120 MW power "natural convection"	.69
Table 5.6: Temperature measurements with 120 MW power "forced convection"	.69
Table 5.7: % C measurements with 120 MW power "forced convection"	.69
Table 5.8: Model results - maximum velocity "m/sec" with temperature "K" - % (C –
slag thickness "m"	
Table 5.9: Model results – maximum velocity "m/sec" with temperature "OC" - % of	C –
slag thickness "m"	.80
Table 1: Economic case details	.93

Nomenclature

Symbol Meaning

AC Alternative Current

ASTM American Society of Testing of Materials

CFD Computational Fluid Dynamic

Cp Heat Capacity at Constant Pressure

DC Direct Current

DRI Direct Reduced Iron

EAF Electric Arc Furnace

EAFD Electric Arc Furnace Dust

EBT Eccentric Bottom Tapping

FeMn Ferro-manganese

FeSi Ferro-silicon

FeSiMn Ferro-silicon-manganese

g Gravity Acceleration

G Heat Generation Source Term

HBI Hot Briquetted Iron

kwh kilo watt hour "Energy Measuring Unit"

LES Large Eddy Simulation

LRF Ladle Refining Furnace

MW Mega Watt "Power Measuring Unit as Active Power"

MWH Mega Watt Hour "Energy Measuring Unit"

MVA Mega Volt Ampere "Power Measuring Unit as Apparent Power"

SVC Static VAR Compensator

TTT Tap to Tap Time

U velocity component in X direction

UHP Ultra High Power

V velocity component in Y direction

VAR Volt Ampere Reactive

W velocity component in Z direction

P Pressure

ρ Density

K Thermal conductivity

k Turbulence kinetic energy

ε Turbulence dissipation rate

μ Molecular Viscosity

μ_t Molecular Viscosity

 μ_e Effective Viscosity " $\mu + \mu_{t"}$

 σ_k Model constant

 σ_{ϵ} Model constant

بِسمِ اللهِ الرّحمٰنِ الرّحِيمِ

In the name of Allah, the Compassionate, the Merciful