Intensive Care Unit Acquired Infection as a Side Effect of Sedation

Essay
Submitted for Partial Fulfillment of Master Degree
in Intensive Care Unit

 \mathfrak{P}_{γ} Nermen Abdel Atty Abdel Kader Elsayed $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{C}\hbar$

Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Ahmed Abd-El Aala El Shawarby

Professor of Anesthesiology & Intensive Care Faculty of Medicine- Ain Shams University

Dr. Alfred Maurice Said

Assistant Professor of Anesthesiology & Intensive Care Faculty of Medicine- Ain Shams University

Dr. Ibrahim Mamdouh Esmat

Lecturer of Anesthesiology & Intensive Care Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2012

سورة البقرة الآية: ٣٢

First of all, my deepest and greatest gratitude and thanks to **God** for helping and supporting me to present this modest work.

In fact, I can't find meaningful words to express my extreme thankfulness, profound gratitude and deep appreciations to my eminent Prof. Dr. Ahmed Abd-El Ada El Shawarby, Professor of Anesthesiology and Intensive care, Faculty of Medicine- Ain-Shams University, for his majestic generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

Also I'm deeply grateful to **Dr.** Alfred Maurice Said, Assistant Professor of Anesthesiology and Intensive Care, Faculty of Medicine - Ain-Shams University, who supported me through devoting her time, to facilitate the production of this work.

And special thanks to **Dr. Ibrahim Mamdouh Esmat**, Lecturer of Anesthesiology and Intensive Care, Faculty of Medicine - Ain-Shams University for his great, great efforts, unlimited experience and support throughout this work.

Finally, I would like to express my deepest thankfulness to my Family special my parents, my husband and my brother for their great help and support whom without I could do nothing

Nermen Abdel Atty Elsayed

Table of Contents

Subject	Page
List of Abbreviations	I
List of Tables	V
List of Figures	VI
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Risk Factors For ICU Acquired	4
Infection	
Chapter (2): A Brief Review About	
Pharmacological Actions Of Opioid, Sedatives And	
Hypnotics	
Chapter (3): Role Of Sedation In Prevalence Of	
Infection	
Chapter (4): Modulation Of Sedation To Prevent	
ICU Acquired Infection	
Summary	113
References	
Arabic Summary	

List of Abbreviations

Abb.	Meaning
γ IFN	γ interferon.
6 MAM	6 mono-acetyl-morphine
AIDs	Acquired immune deficiency.
ARDS	Acute respiratory distress syndrome.
B.d	Twice a day.
BSIs	Blood stream infections.
BZD	Benzodiazepines.
Ca+2	Calcium.
CAUTI	Catheter-associated urinary tract infection.
cGMP	Cyclic guanosine mono phosphate.
CIVS	Continuous intravenous sedation.
CLP	Cecal ligation and puncture.
CMBC	Concentration of moving blood cells.
CMRO2	Cerebral metabolic rate for oxygen consumption.
CNS	Central nervous system.
CO	Cardiac output.
CPIS	Clinical pulmonary infection score.
CVS	Cerebro-vascular infection.
DIS	Daily interruption of sedative infusions.
ECT	Electro convulsive therapy.
EENT	Eyes, ears, nose, throat.
ESBIs	Extended spectrum beta lactamases.
GABA	γ amino butyric acid.

Abb.	Meaning
GI	Gastrointestinal infection.
HCV	Hepatitis C virus.
HFO	High frequency oscillatory ventilation.
HIV	Human immunodeficiency virus.
HR	Heart rate.
ICU	Intensive care unit.
IgE	Immune-globins E.
IL-2	Interleukin 2.
IV	Intravenous.
IVDR-BSI	Intra vascular devices related blood stream.
IVDs	Intra vascular devices.
K+1	Potassium.
LDF	Laser Doppler flow meter.
LPS	Lipo-poly saccharide.
LRT	Lower respiratory infection.
LTAC	Long term acute care.
LTCFs	Long-term care facilities.
M6G	Morphine-6-glucuronide.
MAP	Mean arterial pressure.
MDR	Multi-drug resistance.
MODS	Multi-organ dysfunction syndrome.
MRSA	Methicillin-resistant staph. aurous.
NIRS	Near infra-red spectroscopy.
NIs	Nosocomial infections.
NK	Natural killer.
NMDA	N-methyl-D-aspartate.

Abb.	Meaning
NNIS	National nosocomial infection surveillance
	system.
NO	Nitric oxide.
OPRD1	Opioid receptor D1.
OPRM1	Opioid receptor M1.
OPS	Orthogonal polarization spectral imaging technique.
OT	Occupational therapy-orthopedic therapy.
PBR	Peripheral benzodiazepine receptor.
PNE	Pneumonia.
PT	Physical therapy.
PU	Perfusion units.
REM	Rapid eye movement.
ScvO2	Central venous o2 saturation.
SDF	Side stream sark- field imaging technique.
SIRS	Systemic inflammatory response syndrome.
SIV	Simian immune deficiency virus.
SPP	Species.
SSI	Surgical site infection.
SSTI	Soft tissue infection.
STO2	Tissue oxygen saturation.
T.i.d	Three times daily.
T1/2	Half life of drugs.
TCI	Target-controlled infection.
TNF	Tumor necrosis factor.
USA	United state of America.

Abb.	Meaning
UTIs	Urinary tract infections.
VAP	Ventilator associated pneumonia.
VILI	Ventilator induced lung injury.
VRE	Vancomycin resistant enterococci.

List of Tables

Table No.	Title	Page
Table (1)	The risk factors for ICU acquired infection.	29
Table (2)	Classification of opioids	32
Table (3)	Drugs acting on GABA receptors	47
Table (4)	Pharmacokinetics of some GABAergic agents	50
Table (5)	Immunomodulatory effects of sedative agents used in ICU patients	87
Table (6)	Mechanisms by which sedation might promote ICU-acquired infection	93

List of Figures

Fig. No.	Title	Page
Fig. (1)	Major sites of infection in mixed medical- surgical ICUs	15
Fig. (2)	Routes of microbial entry to the catheterized urinary tract	24
Fig. (3)	The potential sources by which an intravascular device may become infected	27
Fig. (4)	The GABAA-benzodiazepine receptor complex	46
Fig. (5)	Visualization of the human sublingual microcirculation using OPS imaging.	68
Fig. (6)	An example of a laser Doppler recording of blood flow during reactive hyperaemia in a patient sedated with midazolam	73
Fig. (7)	Potential mechanisms of immunomodulatory effects of sedative agents	80
Fig. (8)	Neuroimmune effects of sedative agents	
Fig. (9)	Duration of mechanical ventilation: continuous intravenous sedation versus interrupted/no intravenous sedation. Shown are Kaplan-Meier curves for patients receiving continuous intravenous sedation (CIVS) and patients not receiving continuous intravenous sedation	100
Fig. (10)	Fundamental components of successful analgesia and sedation strategies.	107

Introduction

Healthcare—associated infections are the most common complications affecting hospitalized patients. ICU acquired infections represent the majority of these infections. In a recent multi-center study conducted in 71 adult ICUs, 7.4 % of patients had an ICU acquired infection. (*Burke*, 2003)

ICU acquired pneumonia (47%) and ICU acquired blood stream infection (37%) were the most frequency reported infections. Sedatives and analgesic medications are routinely used in mechanically ventilated patients to reduce pain and anexiety to allow patient to tolerate invasive procedures in ICU.

(Hugonnets et al., 2007)

Mostly a combination of opium to provide analgesia and hypnotic to provide sedation is commonly used. A variety of these drugs used by intravenous route (IV) in adults are available for use in ICU including (Morphine, Fentanil, Midazolam, and Propofol). (Vincent et al., 2006)

Recently, several studies reported that longer duration of use of mechanical ventilation and longer hospital stay in patients who receive sedation in ICU are well known risk factors for ICU acquired infections. (*Nseirs et al.*, 2005)

Clinical studies comparing different sedative agents don't provide evidence to recommend uses of a particular agent to reduce ICU acquired infection rate . (Burke, 2003)

However sedation strategies aiming to reduce the duration of mechanical ventilation, such as daily interruption of sedatives or nursing implementing sedation protocol should be promoted.

(Malacame et al., 2008)

In addition the use of short acting opoiods and sedatives as propofol and Dexmedetomidine, associated with shorter duration of mechanical ventilation and ICU stay might be helpful in reducing ICU acquired infection rate.

(Malacame et al., 2008)

Prolongation of exposure to risk factors for infection as (Micro aspiration, Microcirculatory effects, Immunomodulatory effects and Gastrointestinal motility disturbances) are main mechanisms by which sedation may favor infection in critically ill patients.

(Hugonnets et al., 2007)

Aim of the Work

The aim of this essay is to discuss data that suggests a relationship between infection and sedation to review available data for the potential causes and pathophysiology of this relationship and to identify potential preventive measures.

Chapter (1):

Risk Factors for ICU Acquired Infection

Several studies demonstrated that sedation prolongs exposure to risk factors for intensive care unit (ICU) acquired infection. In a prospective observational cohort study performed on 252 consecutive ICU patients requiring mechanical ventilation, Kollef and colleagues found that, duration of mechanical ventilation was significantly longer for patients receiving continuous intravenous sedation compared with patients not receiving it. (Kollef et al., 1998)

Similarly, the lengths of intensive care and hospitalization were statistically longer among patients receiving continuous intravenous sedation. Furthermore, muscle relaxants are adjuncts to sedation in some patients. The use of muscle relaxant agents is a well-known risk factor for polyneuropathy and prolonged mechanical ventilation duration.

(Arroliga et al., 2005)

In the following lines we will discuss risk factors for ICU acquired infection in details:

1- Antimicrobial resistance in the intensive care unit and antibiotic use:

Bacteraemia is a frequent occurrence in the critically ill patients, with an incidence reaching 26% in intensive care unit populations. Patients with community-acquired bacteraemia may require ICU admission for management of related organ dysfunction; however, the majority develops bacteraemia as a secondary nosocomial event, either on the general ward or while in the ICU. This is frequently related to extensive use of invasive procedures and an impaired immune response related to underlying disease processes or the unintentional effects of therapy. The clinical spectrum of bacteraemia can vary from asymptomatic through to septic shock. The source often remains unknown (primary), or is linked to local infection such as line-related sepsis or (Corona et al., 2004) pneumonia.

The intensive care unit (ICU) often is called the epicenter of infections, due to its extremely vulnerable population (reduced host defenses deregulating the immune responses) and increased risk of becoming infected through-multiple