Trends of Pediatric Oncology at National Cancer Institute (NCI), Cairo, Egypt: Frequencies and Survival from Jan. 2001 to Jan. 2006

Thesis
Submitted in partial fulfillment of the degree of M.D in
Pediatric Oncology

By

Riham Abd Elaziz Abd Elghani

M.B, B.Ch, M.Sc National Cancer Institute Cairo University

UNDER THE SUPERVISION OF

Prof. M. Hany Mohamed Hussein

Professor of pediatric Oncology National Cancer Institute Cairo University

Prof. Samy Ahmed Elbadawy

Professor of radiotherapy National Cancer Institute Cairo University

Prof. Inas Elattar

Professor of medical statistics National Cancer Institute Cairo University

> 2009 NCI - Cairo University

Abstract

Background: Public concern about possible increases in childhood cancer incidence in Egypt led us to examine recent childhood cancer trends.

Methods: Cancers diagnosed in 3483children under age 18 years from 2002 to 2006 and reported to registries in the National Cancer were investigated. Cancer trends were analyzed according to anatomic site and histologic categories of the International Classification of Childhood Cancer.

Results: A modest rise in the incidence of leukemia, the most common childhood cancer. For brain and other central nervous system (CNS) cancers, incidence rose strikingly. A few rare childhood cancers demonstrated upward trends (e.g. adrenal neuroblastomas, and retinoblastomas). In contrast, incidence decreased modestly for lymphomas).

Conclusion: There was a substantial change in incidence for the major pediatric cancers, and rates have risen relatively in comparison with the previous NCI study. The strikingly apparent increase that was observed for brain/CNS cancers suggest that the increases likely reflected diagnostic improvements or reporting changes as well as establishment of tremendous radiotherapeutic treatment.

Recommendation: a national cancer registry is required to better determine the real magnitude of childhood cancer in Egypt and thus leading to better management.

Keywords: childhood cancer, childhood leukemia, incidence, trends, cancer registry, epidemiology.

Acknowledgements

The completion of this work could not have been possible without the wholehearted and positive contribution of a number of people. I lack the right words to express my gratitude to all those involved. I will always remain beheld in awe for their help and guidance.

I am particularly grateful to Professor Dr. Hany Hussein, Professor of Pediatric Oncology, National Cancer Institute, Cairo University, who honored me with the selection of the subject and supervision of this work. For him, I will remain always indebted.

My sincere gratitude goes to Professor Dr. Samy El Badawy, Professor of Radiotherapy, Faculty of Medicine, Cairo University, for hir precious and sincere efforts in supervising this work.

I acknowledge the tremendously helpful and supportive contribution of Professor Dr. Inas Al Attar who helped me in gathering and interpreting the data and I was lucky to working under her supervision, and learning from her expertise.

Riham A Aziz.

DEDICATION

I WILL ALWAYS REMAIN GRATEFUL TO MY BELOVED FAMILY,
MY FATHER, MY MOTHER, AND MY DAUGHTERS.

SPECIAL THANKS AND GRATITUDE GOES TO MY DEAR HUSBAND SAMEH, WHO WAS THE COMPANION OF MY DIFFICULT AND TOUGH WORK, AND WHO CONTRIBUTED BY HIS TIME, EFFORT AND PATIENCE IN THE ACHIEVEMENT AND CONCLUSION OF THIS WORK.

LASTLY, I WOULD LIKE TO DEDICATE THIS WORK TO THE SOUL

OF MY DEAR BROTHER MAHMOUD WHOM I REALLY MISSED BEING BY

MY SIDE. MAY GOD REST HIS SOUL.

RIHAM A AZIZ.

List of contents

Introduction	1
AIM OF WORK	2
Review of literature	
Classification	4
Childhood cancer registration	5
Epidemiologic approaches in childhood cancer	7
Genetic epidemiology	10
Cancer in the developing countries	13
Childhood cancer as a health problem	15
The Geography of Pediatric Neoplasia	21
Overall cancer frequency and incidence by type of cancer for	23
children and adolescents	
Variation in Childhood Cancer Incidence by Gender	26
Variation in Childhood Cancer Incidence by Race and Ethnicity	27
Acute Leukemias	30
Hodgkin's and non Hodgkin lymphomas	37
Tumors of the Central Nervous System	42
Retinoblastoma	45
Neuroblastoma	46
Wilms tumor	47
Bone tumors	48
Rhabdomyosarcoma	49
Other solid tumors	50
Materials and methods	51
Results	54
Discussion	109
Summary	120
Recommendations	125
References	126
Arabic summary	

<u>List of figures</u>

Figure (1) Leading causes of death in children in the United States, 2001.	15
Figure (2) projected deaths by cause for high, middle and low income countries.	17
Figure (3) Distribution of specific cancer diagnoses for children (0 to 14 years) and adolescents (15 to 19 years), 1992 to 2001.	24
Figure (4) Age-adjusted incidence rates for childhood cancer by race and ethnicity, 1992 to 2001.	28
Figure (5) Age distribution of 3,620 children with acute lymphoblastic leukemia	31
Figure (6) Approximate incidences of common central nervous system tumors in children	43
Figure (7) Distribution of malignant cases attending the pediatric oncology clinic.	59
Figure (9) Geographical distribution of malignant cases attending the pediatric oncology clinic.	62
Figure (10) Age distribution of malignant cases attending the pediatric oncology clinic.	64
Figure (11) Clinical presentation distribution of malignant cases attending the pediatric oncology clinic	65
Figure (12) Gender distribution of leukemia cases attending the pediatric oncology clinic	69
Figure (13) Distribution of main complaint at initial presentation of leukemia patients	69
Figure (14) Geographical distribution of leukemia case attending the outpatient clinic	70
Figure (15) Gender distribution of lymphoma cases attending the pediatric oncology clinic.	74
Figure (16) Distribution of main complaint at initial presentation of lymphoma cases attending the pediatric oncology clinic.	74

Figure (17) goographical distribution of lymphome goog attending	
Figure (17) geographical distribution of lymphoma cases attending the pediatric oncology clinic.	75
Figure (18) distribution of histological subtypes of HD cases attending the pediatric oncology clinic.	75
Figure (19) distribution of NHL subtypes cases attending the pediatric oncology clinic.	76
Figure (20) gender distribution of brain tumor case attending the outpatient clinic.	79
Figure (21) distribution of main complaint at initial presentation of brain tumors cases attending the pediatric oncology clinic	79
Figure (22) geographical distribution of brain tumors cases attending the pediatric oncology clinic.	80
Figure (23) gender distribution of neuroblastoma cases attending the pediatric oncology clinic.	83
Figure (24) distribution of main complaint at presentation of neuroblastoma cases attending the pediatric oncology clinic.	83
Figure (25) distribution of site of metastatic neuroblastoma cases attending the pediatric oncology clinic	84
Figure (26) geographic distribution of neuroblastoma cases attending the pediatric oncology clinic.	84
Figure (27) gender distribution of retinoblastoma cases attending the pediatric oncology clinic.	87
Figure (28) distribution of main complaint at presentation of retinoblastoma cases attending the pediatric oncology clinic.	87
Figure (29) distribution of site of metastatic retinoblastoma cases attending the pediatric oncology clinic.	88
Figure (30) geographical distribution of retinoblastoma cases attending the pediatric oncology clinic.	88
Figure (31) gender distribution of wilms tumor cases attending the pediatric oncology clinic.	90
Figure (32) distribution of main complaint at initial presentation of wilms tumor cases attending the pediatric oncology clinic.	90
Figure (33) geographical distribution of wilms tumor cases attending the pediatric oncology clinic.	91
Figure (34) distribution of liver tumor cases attending the pediatric oncology clinic.	92

Figure (35) gender distribution of bone tumors cases attending the pediatric oncology clinic.	96
Figure (36) distribution of main complaint at initial presentation of bone tumors cases attending the pediatric oncology clinic.	96
Figure (37) distribution of site of metastatic disease of bone tumors cases attending the pediatric oncology clinic.	97
Figure (38) geographic distribution of bone tumors cases attending the pediatric oncology clinic.	97
Figure (39) distribution of pathological subtypes of osteosarcoma cases attending the pediatric oncology clinic.	98
Figure (40) gender distribution of soft tissue sarcoma cases attending the pediatric oncology clinic.	101
Figure (41) distribution of main complaint at presentation of soft tissue sarcoma cases attending the pediatric oncology clinic	101
Figure (42) distribution of site of metastatic disease of soft tissue sarcoma cases attending the pediatric oncology clinic.	102
Figure (43) geographic distribution of soft tissue sarcoma cases attending the pediatric oncology clinic.	102
Figure (44) distribution of pathological subtypes of RMS cases attending the pediatric oncology clinic.	103
Figure (45) pathological subtypes of non-rhabdomyosarcoma cases attending the pediatric oncology clinic.	105

List of tables

Table 1: familial neoplastic syndromes associated with childhood cancer	11
Table 2: risk factors for known childhood malignancies	20
Table 3: incidences of different cancers by gender (1990-2001)	26
Table 4: incidences for different cancers for white children and black children (1990-2001)	29
Table 5: inherited disorders associated with brain tumors	44
Table 6: median follow up period of malignant cases attending the pediatric oncology clinic	56
Table 7: Detailed distribution of malignant cases attending the pediatric oncology clinic.	57
Table 8: Gender distribution of malignant cases attending the pediatric oncology clinic.	60
Table 9: geographical distribution of malignant cases attending the pediatric oncology clinic.	61
Table 10: Age distribution of malignant cases attending the pediatric oncology clinic.	63
Table 11: Clinical presentation distribution of malignant cases attending the pediatric oncology clinic.	65
Table 12: distribution of leukemia cases attending the pediatric oncology clinic.	66
Table 13: distribution of lymphoma cases attending the pediatric oncology clinic.	72
Table 14: pathological subtypes of Hodgkin's disease cases attending the pediatric oncology clinic.	73
Table 15: pathological subtypes of Non Hodgkin lymphoma cases attending the pediatric oncology clinic.	73
Table 16: distribution of brain tumors cases attending the pediatric oncology clinic.	78
(Table 17): Distribution of neuroblastoma cases attending the pediatric oncology clinic.	82

(Table 18): distribution of retinoblastoma cases attending the pediatric oncology clinic.	86
(Table 19): distribution of wilms tumor cases attending the pediatric oncology clinic.	89
(Table 20): distribution of liver tumors cases attending the pediatric oncology clinic.	92
(Table 21): distribution of Bone tumors cases attending the pediatric oncology clinic.	95
(Table 22): pathological subtypes of osteosarcoma cases attending the pediatric oncology clinic.	98
(Table 23): distribution of soft tissue sarcoma cases attending the pediatric oncology clinic.	100
(Table 24): pathological subtypes of rhabdomyosarcoma cases attending the pediatric oncology clinic.	103
(Table 25): pathological subtypes of non-rhabdomyosarcoma cases attending the pediatric oncology clinic.	104
(Table 26): distribution of cases of uncommon tumors attending the pediatric oncology clinic.	106
(Table 27): distribution of liver tumors cases attending the pediatric oncology clinic.	107

Introduction

Over the last few decades tremendous advances have been made in resource-rich countries in the diagnosis, management and cure of children with cancer. They have moved from little expectation of survival in the 1960s to 80% cure rates for many childhood tumors. The human genome project has opened new avenues of research into cellular resistance and treatment failure.

Modern molecular and imaging techniques are adding to the accuracy and precision of diagnosis and residual disease recognition. With these advances, we are focusing more and more on optimizing psychosocial support, improving quality of life and minimizing toxicity, even reducing intensity of treatment for good-risk patients.

The overall incidence of childhood cancer in low-income countries and developed countries is reported to be broadly superimposable (Parkin et al., 1988). Very little is known, however, about the clinical epidemiology and even less about the outcome of pediatric cancer patients, who certainly are not given high public health priority in contexts of care where even essential needs are hardly met. Pediatric cancer patients are therefore at a high risk of severe under-treatment because of lack of resources and organizational facilities (Scopinaro MJ, et al., 2002).

Childhood cancer remains the leading cause of disease-related mortality among children 1 to 14 years of age and there are 1,500 to 1,600 cancer-related deaths annually in the United States among children younger than 15 years of age. The relative contribution of cancer to overall mortality for 15-to 19-year-olds is less than that for younger children, although approximately 700 deaths from cancer occur annually in this age group.

REVIEW OF LITERATURE

There are marked differences between childhood and adult cancer. **First**, cancer is generally a rare disease among children. Annual incidence of all cancer in children under 5 years of age in developed countries is only 0.5%, according to a new report [Stiller CA. Epidemiology and genetics of childhood cancer. Oncogene 2004; 23:6429-44.]. In European countries, 1% of all malignant neoplasms occur in patients younger than 20 years of age (the ACCIS project 2004)

Second, childhood cancers are histologically variable, and embryonic tumors are the most common, while the majority of adult cancers are carcinomas (Stiller CA, 2004).

Twelve types of malignant childhood tumors have been classified according to the International Classification of Childhood Cancer (ICCC)

However, pediatric cancers can also be divided into 3 subgroups (Pinkerton CR et al., 1994)

- 1. Embryonal tumors, which show early age peaks. Retinoblastoma, neuroblastoma, and Hepatoblastoma have the highest incidence rate in the first year of life.
- 2. Juvenile neoplasms, which are unique to younger age groups.
- 3. Adult-type tumors, which are rarely seen in children.

Prenatal factors are considered to affect the incidence of tumors in children under the age of 5 years [Pratt CB, 1985]. It is generally accepted that cancer results from genetic changes [Stiller CA, 2004)

The carcinogenic process in children is much shorter than in adults. Infancy is the age when cancer incidence rates are the highest during childhood; therefore, it is reasonable to assume that many pediatric

cancers result from aberrations in early developmental stages and in utero. An increased risk of childhood cancers has been described to be associated with certain genetic conditions or syndromes such as chromosomal abnormalities, DNA repair disorders, congenital anomalies, hereditary immune deficiency states, and other hereditary syndromes [Stiller CA. 2004).

Although childhood cancer is rare, it is of great scientific interest for a number of reasons. Several types of cancer are virtually unique to childhood, whereas the carcinomas most frequently seen in adults, those of lung, female breast, stomach, large bowel, and prostate, are extremely rare among children.

Some of the most striking progress in cancer treatment has been made in pediatric oncology. Investigation of childhood tumors has led to major advances in the understanding of the genetic etiology of cancer

Classification

Childhood cancers exhibit great histologic diversity and often arise in embryonal precursor cells. Some types of tumor can arise in many different primary sites. Therefore it is more appropriate for childhood cancers to be classified according to histology and site.

The current standard classification is the International Classification of Childhood Cancer, with groups defined by the codes for morphology in addition to topography in the second edition of the International Classification of Diseases for Oncology (ICD-O). The classification contains 12 main diagnostic groups, most of which are divided into subgroups.

The main groups are as follows:

- I. leukemia;
- II. lymphomas and reticuloendothelial neoplasms;

III. central nervous system and miscellaneous intracranial and intraspinal neoplasms;

IV. sympathetic nervous system tumors;

V. retinoblastoma;

VI. renal tumors;

VII. hepatic tumors;

VIII. malignant bone tumors;

IX. soft tissue sarcomas;

X. germ cell, trophoblastic, and other gonadal neoplasms;

XI. carcinomas and other malignant epithelial neoplasms;

XII. Other and unspecified malignant neoplasms.

Most of these groups are limited to malignant neoplasms, but there are two exceptions. Benign and unspecified intracranial and intraspinal tumors, including choroid plexus papilloma, ganglioglioma, non-malignant gliomas, craniopharyngioma, pituitary adenoma, pinealoma, meningioma, and tumors of unspecified type are included in group III because they are recorded by many cancer registries. For the same reason, non-malignant intracranial and intraspinal germ cell tumors are also included (in group X).

Childhood cancer registration

The aim of a cancer registry is to collect information on all cases of cancer occurring within a geographically defined population. Sometimes there are insufficient resources to maintain a population-based registry, but nevertheless it may be possible to collect similar data on all cases seen in one or more hospitals or pathology departments. In the absence of population-based data, these series can still yield much useful information, and several population-based cancer registries trace their origins to hospital or pathology series. The amount of data collected on each case

varies enormously between registries, but the minimum consists of the patient's name (or other unique personal identifier), sex, date of diagnosis and age at diagnosis, and sufficient information on the primary site and histologic type of the neoplasm for it to be coded according to whatever system is used, preferably ICD-O. Most registries collect the patient's date of birth where known, as this is particularly useful for linking data on the same patient from different sources and for detecting duplicates. The basis of diagnosis is also usually recorded, at least to the extent of whether there was histologic verification. The registration data should be checked for internal consistency.

Population-based general cancer registries, including patients of all ages, now cover the whole or part of about 100 countries. As childhood cancer accounts for a very small proportion of all cancer, registries which restrict their coverage to children are able to collect more detailed information on each case. There are population-based childhood cancer registries in several countries or parts of countries in Europe, the Americas and Oceania. These registries are often operated in close collaboration with pediatric oncologists; in Germany, for example, there is a common follow-up system for the childhood cancer registry and for clinical trials. In many countries where there is no national population-based cancer registration, including the USA, Japan, and Spain, registers of patients are maintained by national organizations of pediatric oncologists or by clinical trial groups.

Epidemiologic approaches in childhood cancer

A variety of epidemiologic studies may be used to describe and evaluate childhood cancers. As their name implies descriptive studies attempt to describe rather than compare data.