

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

cara

JOINT DETECTION AND DIVERSITY TECHNIQUES IN CDMA MOBILE RADIO SYSTEMS

by

Ahmad Saad Mohamed Harmal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

ELECTRONICS AND COMMUNICATIONS

Under the Supervision of

Prof. Dr. Emad K. Al-Hussaini

Dr. Hebatallah M. Mourad

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT February 2000

JOINT DETECTION AND DIVERSITY TECHNIQUES IN CDMA MOBILE RADIO SYSTEMS

by

Ahmad Saad Mohamed Harmal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
ELECTRONICS AND COMMUNICATIONS

Approved by the Examining Committee:

Prof. Dr. Emad K. Al-Hussaini, Thesis Main Advisor & K. Al-Hussaini

Prof. Dr. Abdel-hadi A. Ammar, Member

Ammar

Prof. Dr. Abdel-Wahhab F. Hassan, Member

A-Faye

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
February 2000

•		

Abstract

CDMA mobile radio systems suffer from intersymbol interference (ISI) and multiple access interference (MAI) which can be combated by using joint detection (JD) techniques. Furthermore, the time variation of the radio channels leads to degradations of the receiver performance due to fading. These degradations can be reduced by applying diversity techniques. Three suboptimum detection techniques based on matched filters (MF), zero forcing (ZF) and minimum mean square-error (MMSE) equalization are considered. For further improvements, switched diversity and equal gain diversity techniques are employed to combat fading. The performance is depicted in terms of the average bit error probability versus the average SNR per bit in a single cell environment showing an appreciable improvement. Theoretical results for the SNR at the front end of the receiver and the BER for ideal channel are obtained and compared with the simulation results.

Acknowledgement

The author wishes to express his gratitude to Professor Emad K. Al-Hussaini who supervised this work and gave his valuable advice and assistance during different phases of this work. The author owns him most of the success of this work. Grateful thanks to Dr. Hebatallah M. Mourad for her great assistance and advice during this work. I really want to thank them for their lovely manner and patience in many situations. The author is thankful to his family and friends for their support.

Table of contents

	page
Abstract	v
Acknowledgment	vi
Table of contents	vii
List of Figure Captions	ix
List of Symbols and abbreviations	X
1. Introduction	1
2. Fading and Diversity	4
2.1 Fading Phenomenon	4
2.2 Statistical Models for Fading Channels	6
2.2.1 Rayleigh Distribution	6
2.2.2 Rice Distribution	7
2.2.3 Nakagami m-Distribution	9
2.3 Diversity Techniques	10
2.4 Types of Diversity Techniques	10
2.4.1 Frequency Diversity	11
2.4.2 Time Diversity	11
2.4.3 Space or Switched Diversity (antennas diversity)	11
2.4.4 Angle Diversity (Direction Diversity)	11
2.4.5 Field Component Diversity	12
2.4.6 Polarization Diversity	12
2.4.7 Rake Diversity	12
2.5 Combining Techniques	13
2.5.1 Scanning Diversity	14
2.5.2 Selection Diversity Combiner	15
2.5.3 Maximal Ratio Combiner	16
2.5.4 Equal Gain Combiner	. 17
3. Intersymbol Interference and Equalization	19
3.1 Intersymbol Interference Problem	19
3.2 Ideal solution	21
3.3 Raised Cosine Spectrum	22
3.4 Correlative Coding or Partial Response Signaling	25
3.4.1 Duobinary Signaling	25
3.4.2 Modified Duobinary Signaling	30
3.5 Equalization	32
3.5.1 Transversal Filter	33
3.5.1.1 The Preset Equalizer	34
3.5.1.2 Adaptive Equalizer	35
3.5.2 Decision-Feedback Equalization	39
3.5.2.1 Coefficient Optimization	40
3.5.3 Adaptive Decision-Feedback Equalizer	41
3.5.4 Self-Recovering (Blind) Equalization	42

4.	Multi-user Detection Algorithms for CDMA	44		
	4.1 Detection of CDMA	44		
	4.2 General Structure of a Multiple Access	45		
	4.3 Continuous-time transmission model	46		
	4.4 Discrete-time transmission model	51		
	4.5 Description of the discrete-time transmission model using matrix			
	vector notation	53		
	4.6 Detection Problem	58		
	4.7 Maximum likelihood algorithms	59		
	4.8 Linear Algorithms	61		
	4.8.1 Matched filtering	66		
	4.8.2 Zero forcing block linear equalization	69		
	4.8.3 Minimum mean square error block linear equalization	72		
	4.9 Conclusions	75		
5.	Joint Detection and Diversity Techniques in CDMA Mobile Radio			
	Systems	76		
	5.1 Introduction	76		
	5.2 System Model	76		
	5.3 Simulation and Results	80		
	5.3.1 Whitening Matched Filter (WMF)	83		
	5.3.2 Zero Forcing Equalizer (ZF)	83		
	5.3.3 Minimum Mean-Square-Error Equalizer (MMSE)	83		
	5.4 Theoretical Results	87		
	5.4.1 Comparison based on SNR	87		
	5.42 Comparison based on BER	89		
	5.5 Conclusions	91		
6.	Conclusions	92		
ъ		94		
	References			
A	Appendix 9			