List of Contents

	1	Page
•	Introduction and Aim of the Work	1
•	Review of Literature:	
•	Staphylococci	5
	- Virulence factors of Staphylococcus aureus	6
	- Pathogenesis of staphylococcal infection	18
	- Clinical significance of Staphylococcus aureus.	19
	- Clinical significance of Coagulase negative staphylococci	27
	- Epidemiology	28
	- Prevention and control of MRSA	34
	- Treatment of Staphylococcal infections	41
•	Staphylococcal Resistance to	
	β-Lactam Antibiotics	. 48
	- Mechanism of action of β-lactam antimicrobial agents	50
	- Mechanism of Staphylococcal resistance to β-lactam antibiotics	56
•	Laboratory Detection of Methicillin Resistant Staphylococci	64
	➤ Laboratory methods for detection of staphylococcal methicillin resistance	65
	- Oxacillin containing media	65

	-	Disk diffusion test	70
	-	Minimal inhibitory concentration	72
	-	Agglutination tests for detection of specific surface proteins	75
	-	Automated system	79
	-	Molecular detection	81
	> Epide	emilogical typing of MRSA	82
•	Materia	ls and Methods	89
•	Results	••••••	.112
•	Discussi	on	.123
-	Summai	ry and Conclusion	. 130
•	Referen	ces	. 134
-	Arabic s	summary	•••

List of Tables

	Page
•	Tables (1): Virulence factors of Staph.aureus 17
•	Tables (2): Bush-Jacoby-Medeiros classification of β Lactamases 57
•	Tables (3): Formula of Mannitol Salt agar (MSA)-(Oxoid)
•	Tables (4): Formula of DNAse agar (Oxoid)92
•	Tables (5): Formula of Oxacillin Resistance Screening Agar Base (ORSAB) -(Oxoid)93
•	Tables (6): ORSAB Selective Supplement93
•	Tables (7): Formula of Muller Hinton agar (MHA)-(Oxoid)
•	Tables (8): Interpretive Criteria (in mm) for Oxacillin Disk Diffusion Tests
•	Tables (9): Interpretive Criteria (in mm) for Cefoxitin Disk Diffusion Test
•	Tables (10): Descriptive statistics for oxacillin resistance by different methods

•	Tables (11): Comparison between Oxacillin disk diffusion test and Cefoxitin disk diffusion test	114
•	Tables (12): Results of Oxacillin disk diffusion test versus Cefoxitin disk diffusion test for Staph.aureus	115
	Tables (13): Results of Oxacillin disk diffusion test versus Cefoxitin disk diffusion test for CoNS isolates	115
•	Tables (14): Comparison between Oxacillin resistant screen agar base(ORSAB) and Cefoxitin disk diffusion test	116
•	Tables (15): Results of Oxacillin resistant screen agar base(ORSAB) versus Cefoxitin disk diffusion test for Staph.aureus.	118
•	Tables (16): Results of Oxacillin resistant screen agar base(ORSAB) versus Cefoxitin disk diffusion test for CoNS isolates	118
•	Tables (17): Comparison between anti PBP2a latex agglutination test (MRSA screen test) and Cefoxitin disk diffusion test	119
•	Tables (18): Results of anti PBP2a latex agglutination test (MRSA screen test) versus	

	Cefoxitin disk diffusion test for Staph.aureus isolates	120
•	Tables (19): Results of anti PBP2a latex agglutination test (MRSA screen test) versus Cefoxitin disk diffusion test for CoNS isolate	121
•	Tables (20): Parameters of the different methods for detecting methicillin resistance in staphylococci.	122
•	Tables (21): Sensitivity and Specificity of different methods for detection of methicillin resistance in CoNS and Staph .aureus	122

List of Figures

		Page
•	Figure (1): Pathogenic factors of Staphylococcus	9
•	Figure (2): Structure of the staphylococcal cassette chromosome mec	12
•	Figure (3): Peptidoglycan structure in staphylococci	49
•	Figure (4): Antibiotics containing β Lactam Ring	50
•	Figure (5): Structure of penicillin-binding protein of the bacterium Staphylococcus aureus	53
•	Figure (6): Action of β-lactam antibiotics on the peptidoglycan structure of the bacterial cell wall.	54
•	Figure (7): The introduction of antibiotics and consequent evolution of resistance in Staph aureus	55
•	Figure (8a): Induction of staphylococcal β-lactamase synthesis	60

•	Figure (8b): Mechanism of S. aureus resistance to methicillin	60
•	Figure (9): Growth of <i>S.epidermidis</i> and <i>Staph aureus</i> on Mannitol Salt agar	66
•	Figure (10): denim-blue colonies of MRSA on Chromogenic MRSA Agar	68
•	Figure (11): Green colonies of S. aureus on S. aureus ID medium	69
•	Figure (12): E-test	75
•	Figure (13): Mannitol Salt Agar plate showing growth of CoNS and Coagulase positive staphylococci	100
•	Figure (14):DNAse agar Plate	102
	Figure (15): Disk diffusion test showing staphylococcal resistance to oxacillin and cefoxitin disks.	105
	Figure (16): Disk diffusion test showing a clear zone of inhibition for Oxacillin and cefoxitin disks.	105
•	Figure (17): ORSAB plate showing colonies of MRCoNS	107

•	Figure (18): ORSAB plate showing colonies of MRSA	108
•	Figure (19): MRSA Screen test card	110
•	Figure (20): Comparison between Oxacillin disk diffusion test and Cefoxitin disk diffusion test	114
•	Figure (21): Comparison between Oxacillin resistant screen agar base(ORSAB) and Cefoxitin disk diffusion test	117
•	Figure (22): Comparison between anti PBP2a latex agglutination test (MRSA screen test) and Cefoxitin disk diffusion test	119

List of Abbreviation

ACME Arginine catabolic mobile element.

BORSA Border line oxacillin resistant staphylococcal

aureus

BSAC British society for Antimicrobial

chemotherapy.

CA-MRSA Community associated methicillin resistant

staphylococci.

CAN Collagen adhesion protein

CCrA, **CCrB** Cassette chromosome recombinase genes A

and B.

CDC Centers for Disease control and prevention.

CFU Colony forming unit.

CHIPS Chemotaxis inhibitory protein of Staphy

lococci.

CLSI Clinical and laboratory standard institute.

COa coagulase gene.

CoNS Coagulase negative staphylococci.

CVC Central venous catheter.

DD method Disk Diffusion method

DNAse agar Deoxyribonucleic agar

EaP Extracellular adherence protein

E. test Epsilometer test

ECM Extra cellular matrix.

EMRSA Epidemic MRSA

ESBLs Extended Spectrum Beta Lactamases

EUCAST European committee of Antimiorobial

susceptibility testing.

Fem Factor essential for resistance to methicillin.

Fox DD test Cefoxitin disk diffusion test.

GlcNAc N- acetyl glucosamine.

GPS. Gram positive susceptibility

HA-MRSA Health associated methicillin resistant

staphylococcus aureus.

HCWs Health care workers.

HIV Human immune deficiency virus

KDa Kilodalton.

LukE/LukD Leukocidin genes E and D

Mec R1 Mec sensor transducer and repressor genes.

MHA Mueller hinton agar.

MIC. Minimal inhibitory concentration.

MLST. Multilocus-sequencing type.

m-PCR Multiplex PCR.

MRCoNS Methicillin resistant coagulase negative

staphylococci

MRSA Methicillin resistant staphylococcus aureus

MSCRAMM Microbial surface component Recognizing

Adhesive matrix molecules.

MUrNAc N-acetyle muramic acid.

NCCLS National committee for clinical laboratory

standards.

OMSA Oxacillin mannitol salt agar.

ORF Opening reading Frame

ORSAB Oxacillin resistant screen agar base

OxDD test Oxacillin disk diffusion test

PBPs Penicillin binding proteins

PCR Polymerase chain reaction

PFGE Pulsed-Field gel electrophoresis

PPE Personal protective equipments

PVL Panton-Valentine Leucocidin Toxin

SCC mec staphylococcal cassette chromosome

SCOPE Surveillance and Control of Pathogens of

Epidemiologic Importance

SEs Staphylococcal enterotoxins

Spa Staphylococcal protein A gene.

SSS Staphylococcal Scalded skin Syndrome

TSS Toxic shock syndrome.

VISA Vancomycin intermediate-resistant

Staphylococcus aureus

Screening Test for Rapid Detection of Methicillin Resistance in Staphylococcal Isolates

Thesis
Submitted for Partial Fulfillment of Master Degree
in Clinical and Chemical Pathology

BY
Lamees Mohamed Fathi Abo El-Fetoh
(M.B., B.C h.)
Cairo University

Supervised by

Professor/ Amira Mohamed Moukhtar Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Professor/ Eman Mohamed Kamel Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Hala Badr El-Din Ali Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2009

Introduction

Staphylococcus aureus is by far the most important human pathogen among staphylococci (Koneman et al., 1997). staphylococcal resistance was reported shortly after penicillin was introduced and within 6 years 25% of hospital strains were resistant to penicillin, the introduction of methicillin in 1960 was soon followed by resistance and emergence of methicillinresistant Staphylococcus aureus (MRSA) (Ayliffe, 1994).

The first outbreaks of infection caused by (MRSA) had occurred in European hospitals in early 1960 (Ayliffe, 1997). Since that time, MRSA has become a worldwide problem, and its prevalence has increased in past two decades, causing nosocomial infections in many countries. Recently, MRSA has also been detected in community (Borer et al., 2002). Infections caused by MRSA are among the most difficult to treat (Glinka, 2002).

Vancomycin has been considered an effective treatment of MRSA (*Smith et al.*, 1999). However, reports of decreased susceptibility to vancomycin was firstly described in 1997 in

Japan, this report was quickly followed by similar ones from other countries (*Srinivasan et al.*, 2002).

These therapeutic failure of vancomycin for MRSA infections have aroused considerable concern regarding the emergence of MRSA strains for which there will be no effective therapy (Sieradzki et al., 1999).

Coagulase-negative staphylococci (CoNS) are frequently recovered from blood cultures and are a leading cause of nosocomial infections, especially in neonates, immunocompromised individuals, and patients with prosthetic implants (*Perazzi et al.,2006*). A substantial increase in the frequency of oxacillin resistance in CoNS isolates has occurred over the last decades. At present, more than 70% of the CoNS isolates worldwide are resistant to oxacillin (*Diekema, 2001*).

Mithicillin resistance in Staph. aureus and CoNS is associated with the production of PBP2A encoded by mecA gene. The Genotypic method polymerase chaine reaction (PCR) is the gold standard method for mecA gene detection but it is expensive and not practical for routine use in many clinical laboratories (*Adaleti et al.*, 2007).

Accepted phenotypic method for detection of MRSA is cefoxitin disk diffusion (DD) test that correlate better with the presence of mecA gene than do the results of disk diffusion test using oxacillin (*Boubaker 2004*).

The cefoxitin DD test can be used to predict the presence of mecA in Staph. aureus and CoNS with a high degree of sensitivity and specificity when compared to mecA detection using PCR (Swenson-Fred et al., 2005).

Although the use of cefoxitin disk diffusion increases the accuracy of Staph. aureus and CoNS conventional antimicrobial susceptibility tests, testing still requires 24 houres after colony formation (Miller et al., 2005).

So Rapid and accurate detection of methicillin resistance in Staph.aureus isolates is imperative for appropriate treatment to limit the inappropriate use of antimicrobial agents and implementation of institutional program for recognition and management of MRSA outbreaks and cross infection. PBP2A latex agglutination can be performed in 20 minutes with minimal technical training (*Louie et al.*, 2002).