Efficacy of angioplasty in long multisegmental lower limb occlusive lesions

Thesis

Submitted for M.D degree in General surgery Submitted by

Karim Shalaby Mohamed El-Awady M.B., B. CH., M.Sc, General surgery

Under the Supervision of **Prof. Dr. Mahmoud Sobhy Khattab**Professor of general & vascular surgery

Faculty of medicine Ain Shams University

Prof. Dr. Wagih Fawzy Abd El-MalekProfessor of general & vascular surgery Faculty of medicine Ain Shams University

Dr. Atef Abd El-Hameed Desouki

Lecturer of general & vascular surgery Faculty of medicine Ain Shams University

Ain Shams University 2013

Heknowledgement

First and foremost, I feel indebted to ALLAH the kind and merciful.

I would like to express my deepest appreciation and gratitude to **Professor Dr. Mahmoud Sobhy Khattab**, Professor of vascular & general surgery, Faculty of Medicine, Ain Shams University, Egypt, for his kind supervision and generous support.

I am so grateful to **Professor Dr. Wagih Fawzy Abd El-Malek**, Professor of vascular & general surgery, Faculty of Medicine, Ain Shams University, Egypt, for his advise and his effort without which, this work couldn't be achieved.

I would like to express my cordial thanks and deep gratitude to **Dr. Atef Abd El-Hameed Desouki**, lecturer of vascular & general surgery, Faculty of Medicine, Ain Shams University, Egypt, for his kind supervision, constant help and continuous encouragement all through my work.

Lastly, I also want to thank all my family and their support to finish my career.

Karim Shalaby El-Awady

List Of Contents

List of contents	I
List of Abbreviations	II
List of Figures	V
List of Tables	VII
Introduction	1
Aim of the work	4
1) Anatomy of the lower limb arterial system	5
2) Pathology of critical limb ischemia	19
3) Diagnosis of critical limb ischemia	33
4) Treatment of critical limb ischemia	47
5) Patient and methods	92
6) Results	96
7) Discussion	113
8) Summary and conclusion	123
9) References	126
10) Arabic summary	

List of abbreviation

o **ABI**: Ankle brachial index

• **AFS**: Amputation free survival

o **ASA**: acetyl salicylic acid

o **ATA**: Anterior tibial artery

o **AVF**: Arteriovenous fistula

o **BA**: balloon angioplasty

o **BASIL**: By pass versus angioplasty in severe ischaemia of the leg

o **BS**: Bypass surgery

o **BTA**: Below the ankle

o **BTK**: Below the knee

CAD : Coronary artery disease

o **CFA**: Common femoral artery

o **CIA**: Common iliac artery

o CLI: Critical limb ischaemia

o **CRP**: C-reactive protein

CTA: Computed tomographic angiography

o **CVD**: Cerebro vascular disease

o **DEBs**: Drug eluting balloons

DM: Diabetus Mellitus

DSA: Digital subtraction angiography

- o **EIA**: External iliac artery
- **EPDs**: Embolic protection devices
- o **ESRD**: End stage renal disease
- o **ET**: Endovascular treatment
- o **GENOA**: Genetic Epidemiology Network of Arteriopathy
- o **GSV**: Great saphenous vein
- o **HDL**: High-density lipoprotein
- HERS: Heart and Estrogen/Progestin Replacement Study
- **HRQOL**: Hospital costs and healthrelated quality of life
- o IC: Intermittent claudication
- o **IDL**: Intermediate density lipoprotein
- o **ISR**: In stent restenosis
- LMWH: Low molecular weight heparin
- o **LSR**: Limb salvage rate
- MRA : Magentic resonance angiography
- NO: Nitric oxide
- o **OS**: Overall survival
- o **PAD**: Peripheral arterial disease
- PAOD: Peripheral arterial occlusive disease
- o **PGE**: Prostaglandin

- o **PREVENT**: Prevention of Recurrent Venous Thromboembolism
- o PTA: Percutaneous transluminal angioplasty
- o **PTFE**: Polytetrafluoroethylene
- o **PVD**: Peripheral vascular disease
- o QOL: Quality of life
- RCT: Randomized controlled trial
- o **RI**: Renal insufficiency
- o **SD**: Strandard deviation
- o **SFA**: Superficial femoral artery
- o **SIA**: Subintimal angioplasty
- SIROCCO: The Sirolimus Coated Cordis SMART Nitinol Self-Expandable Stent
- o **SLI**: Severe leg ischemia
- o **SMCs**: Smooth muscle cells
- o TASC: Transatlantic intersociety consensus
- o **US**: Ultrasound
- VIBRANT: The Viabahn versus Bare Nitinol Stent Trial
- O VLDL: Very low-density lipoprotein

List Of Figures

Figure No.	Content	Page No.
1-1	The arteries of the pelvis	5
1-2	Branches of external iliac artery	6
1-3	Course of the femoral artery	8
1-4	Scheme of the femoral artery	9
1-5	Popliteal, posterior tibial and peroneal	11
1-6	Anterior tibial and dorsalis pedis arteries	13
1-7	Superficial plantar arteries	18
1-8	Deep plantar arteries	18
2-1	Ischemic ulceration of the distal foot	21
2-2	Atherosclerotic plaque	23
2-3	Formation of atherosclerotic plaque	25
2-4	Consequences of endothelial dysfunction	26
3-1	Method for measurement of ankle pressure	35
3-2	Segmental limb pressures measurement	37
3-3	Duplex categories of peripheral artery stenosis	38
3-4	Conventional angiography	40
3-5	MRA imaging showing bilateral iliac and SFA	43
3-6	Carbon dioxide angiogram	44
4-1	Overview of the management of PAD according to TASC II	47
4-2	TASC classification of aortoiliac lesions	50
4-3	Endovascular procedure after CFA endarterectomy	81
4-4	The Outback LTD reentry catheter	85
4-5	Activated Silverhawk atherectomy catheter	87
6-1	Gender distribution	96
6-2	Age distribution	97

6-3	Risk factors	98
6-4	Rutherford categories of studied cases	99
6-5	Diabtic foot of major tissue loss and infection and partial involvement of the Right heal	100
6-6	Minor tissue loss	100
6-7	Clinical picture on presentation	101
6-8	Distribution of the site of the lesions	102
6-9	Left CIA lesion before and after stenting	104
6-10	SFA lesion before and after balloon dilatation	105
6-11	Popliteal artery lesion before and after balloon dilatation	105
6-12	ATA & Peroneal artery before & after angioplasty	106
6-13	Patency rate of target arteries	107
6-14	Limb salvage rate	108
6-15	Final Clinical Outcome	109
6-16	Over all of limb salvage	110
6-17	Follow up over 6 months of major tissue loss	111
6-18	Follow up of minor tissue loss over two months	112
6-19	Follow up of minor tissue loss over 4 months	112
7-1	The relation between patency rate of target arteries and limb salvage rate after 12 months	116

List Of Tables

Table No.	Content	Page No.
2-1	Fontaine's stages and Rutherford's categories	19
3-1	Duplex Classification of Peripheral Artery Occlusive Disease	39
4-1	TASC classification of Femoropopliteal Disease	52
4-2	TASC classification for tibial lesions	53
4-3	Complications of angioplasty	67
4-4	Patency of Above-Knee Femoropopliteal Grafts	72
4-5	Patency of Below-Knee Femoropopliteal Grafts	72
4-6	Patency of Infrapopliteal Grafts	73
4-7	Patency of Ankle and Below-Ankle Grafts	73
4-8	Complications of Aortobifemoral Bypass	75

Introduction

Peripheral atherosclerotic disease affects 12%–14% of the general population, and its prevalence increases with age, affecting as many as 20% of patients older than age 75 years (*Misra*, 2012).

PAD affects 8 to 10 million Americans and is associated with a threefold to sixfold increased risk of cardiovascular morbidity and death compared with individuals without PAD (*Varu et al.*, 2010).

Patients with CLI represent approximately 1% of the total number of patients with PAD, with overall mortality in these patients approaching 50% at 5 years and 70% at 10 years (*Varu et al.*, *2010*).

Critical limb ischemia is defined as limb pain that occurs at rest, or impending limb loss that is caused by severe compromise of blood flow to the affected extremity. The international consensus on the definition of CLI is the following: any patient with chronic ischemic rest pain, ulcers, or gangrene attributable to objectively proven arterial occlusive disease (*Varu et al.*, 2010).

CLI is usually caused by obstructive atherosclerotic disease; however, CLI can also be caused by atheroembolic or thromboembolic disease, vasculitis, in situ thrombosis related to hypercoagulable states, thromboangiitis obliterans, cystic adventitial disease, popliteal entrapment, or trauma. Regardless of the etiology, the pathophysiology of CLI is a chronic and complex process that affects the macrovascular

and microvascular systems, as well as surrounding tissues (Varu et al., 2010).

Risk factors contributing to PAD are the same as those for atherosclerosis: Smoking - tobacco (tenfold increase in risk for PVD), Diabetes mellitus (two and four times increased risk of PVD), Dyslipidemia, Hypertension, age over 50, gender (male), obesity, or with a family history of vascular disease (*Becker*, 2002).

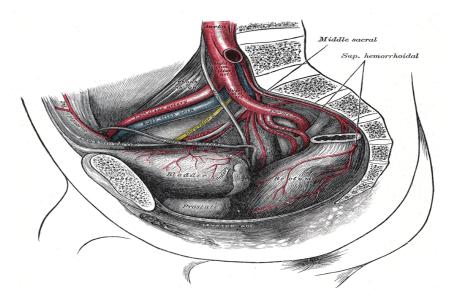
The diagnosis is usually made by the typical symptoms. A simple test that can be done is to check the blood pressure in the ankle and compare this to the blood pressure in the arm. This called the ankle brachial pressure index (ABI). If the blood pressure in the ankle is much different to that in the arm that means that arteries of lower limb are affected. CT angiography or arterial duplex can build up a 'map' of the arteries and show where they are narrowed (*Mazari et al.*, 2010).

Once the diagnosis is confirmed, the goals of treating CLI are to relieve ischemic pain, heal ischemic ulcers, prevent limb loss, improve patient function and Quality of Life, and prolong survival. Revascularization could optimally achieve these goals, but the severity of comorbidities, along with durability of the reconstruction in patients with CLI, demands a risk-benefit analysis to determine the optimal therapy (*Varu et al.*, 2010).

For patients able to tolerate surgical procedures, revascularization, including bypass surgery, with or without thromboendarterectomy, as well as endovascular techniques offers the best chance for limb salvage (*Varu et al.*, 2010).

Most of the studies report small numbers of patients who, for usually technical reasons, are not candidates for open surgery. Patients usually are cited as having no distal arterial targets for bypass or no veins for a conduit. The end points of success are typically quite broad and include healing of ischemic ulcers, resolution of rest pain, improvement of the ankle-brachial index, or healing of a minor amputation site (*Kudo et al.*, 2005).

The clinical outcomes achieved with Percutaneous Transluminal Angioplasty are typically compared with the expected results after bypass. The conclusions are fairly consistent. Each report usually concedes that although outcomes are not as good as those with surgical bypass, they are usually better than expected and are certainly better than doing nothing (*Cvetanovski et al.*, 2009).


In summarizing the reported data, limb salvage and, more commonly "clinical success rates" ranged from 55% to 90%. It is interesting to note that in essentially every report, historical controls are implied (*Clair et al.*, 2005).

Aim of The Work

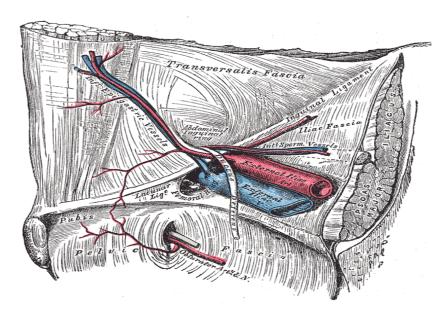
The aim of this study is to outline the efficacy of angioplasty in long multisegmental lower limb occlusive lesions in patients unsuitable for surgery either due to poor distal run off, or patients with poor general condition.

The Common Iliac Arteries

The abdominal aorta divides, on the left side of the body of the fourth lumbar vertebra, into the two common iliac arteries (Fig. 1-1). Each is about 5 cm. in length. They diverge from the termination of the aorta, pass downward and lateralward, and divide, opposite the intervertebral fibrocartilage between the last lumbar vertebra and the sacrum, into two branches, the external iliac and hypogastric arteries; the former supplies the lower extremity; the latter, the viscera and parietes of the pelvis (*lewis*, 2000).

(Fig. 1-1) The arteries of the pelvis (lewis, 2000).

The right common iliac artery is somewhat longer than the left, and passes more obliquely across the body of the last lumbar vertebra. (*lewis*, 2000).


Branches: The common iliac arteries give off small branches to the peritoneum, Psoas major, ureters, and the surrounding areolar tissue, and occasionally give origin to the iliolumbar, or accessory renal arteries (*lewis*, 2000).

The External Iliac Artery

The **external iliac artery** is larger than the hypogastric, and passes obliquely downward and lateralward along the medial border of the Psoas major, from the bifurcation of the common iliac to a point beneath the inguinal ligament, midway between the anterior superior spine of the ilium and the symphysis pubis, where it enters the thigh and becomes the femoral artery (*lewis*, 2000).

Branches: Besides several small branches to the Psoas major and the neighboring lymph glands, the external iliac gives off two branches of considerable size:

The **inferior epigastric artery** (a. epigastrica inferior; deep epigastric artery) (Fig. 1-2) arises from the external iliac, immediately above the inguinal ligament. It finally divides into numerous branches, which anastomose, above the umbilicus, with the superior epigastric branch of the internal mammary and with the lower intercostal arteries (lewis, 2000).

(Fig. 1-2) Branches of external iliac artery (lewis, 2000).