

PERI-PROSTHETIC FRACTURES IN HIP ARTHROPLASTY

Thesis

Submitted for the partial fulfillment of M.D Degree in *Orthopedics*

By Gaber El-Sherbiny Hamed M.B.,B.Ch, M.Sc., Orthopaedics

Under Supervision

Prof. Dr./ Mohamed Ahmed Mezied

Professor of Orthopaedic Surgery Faculty of Medicine, Ain shams University

Prof. Dr./ El-Zaher Hassan El-Zaher

Professor of Orthopaedic Surgery Faculty of Medicine, Ain shams University

Dr./ Ibrahim Mostafa El-Ganzory

Assistant Professor of Orthopaedic Surgery Faculty of Medicine, Ain shams University

Faculty of Medicine
Ain Shams University
2012

Acknowledgment

First, I would like to thank Allah the merciful and compassionate for making all this work possible and for granting me with the best teachers, family, friends, and colleagues that many people would wish and dream of having.

I am honored to have Prof. Dr. Mohamed Ahmed Mezied, Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, as a supervisor of this work. I am greatly indebted to him for his kind guidance and patience.

I am deeply thankful to Prof. Dr. El-Zaher Hassan El-Zaher, Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his great help and effort to make this work possible. I was honored to work with him.

Words can not express my deep gratitude and sincere appreciation to Prof. Dr. Ibrahim Mostafa El-Ganzory, Assistant Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, who assisted me in most of the work. I am greatly grateful for his generous help, kind advice, and kind guidance.

Contents

	Page
Introduction	1
Aim of the work	3
Review of Literature	4
Incidence, risk factors and etiologies	4
Classification	32
Methods of diagnosis	40
How to minimize the risk of periprosthetic fractures	43
Treatment protocol of periprosthetic fractures	50
Patients and Methods	81
Results	126
Discussion	137
Summary and Conclusion	157
References	159
Arabic Summary	

List of Tables

Table No.	Title	Page
Table (1): A	age of patients	82
Table (2) : S	ex of the patients	84
Table (3): S	ide of the fracture	85
Table (4) : T	Timing of fracture	86
Table (5):	Femoral and acetabular fracture percentage	87
Table (6):	Type of primary prosthesis	88
Table (7):	Priamry femoral component	89
Table (8):	Cemented or cementless ace- tabular component	90
Table (9):	Percentage of femoral fracture during revision surgery	91
Table (10):	Percentage of femoral fracture during primary surgery	92
Table (11):	Classification of fracture	93
Table (12):	Periprosthetic femoral fracture	131
Table (13):	Periprosthetic acetabular fracture	133

List of Tables (Cont..)

Table No.	Title	Page
Table (14):	Lines of treatment of femoral fracture in our study	135
Table (15):	Functional outcome results in our study	137
Table (16):	Methods of treatment in our study	144

List of Figures

Figure No.	Title	Page
Fig. (1):	Photo of skeletal femus	5
Fig. (2):	Photo of femur showing anterversion of the head and neck	7
Fig. (3):	Lever arm of bending movement	10
Fig. (4):	Forces producing torsion of stem	13
Fig. (5):	Zones of looseness around femoral stem	27
Fig. (6):	Zones of looseness around acetabular component	28
Fig. (7):	X-ray of Loosening around femoral component	29
Fig. (8):	X-ray of Loosening around acetabular component	30
Fig. (9):	Scheme of Bethea classification	33
Fig. (10):	Scheme of Johansson classificatin	34
Fig. (11):	Intraoperative Vancouver classification	36

Figure No.	Title	Page
Fig. (12):	Postoprative Vancouver Classification	37
Fig. (13):	Intraoperative fracture of proximal femur fixed with cerclage cables	52
Fig. (14):	Anatomic orientation of cerclage wires	54
Fig. (15):	X-ray of Mennen Plate breakage at the site of non-union	56
Fig. (16):	X-rays of dynamic compression plate (5 years postoperative)	58
Fig. (17):	Ogden plate	59
Fig. (18):	X-ray of cerclage cables	60
Fig. (19):	Cable ready plate	60
Fig. (20):	X-ray of fracture fixed with locked plate	62
Fig. (21):	X-ray locked plate fixed fractre around Austin-moor prosthesis	63
Fig. (22):	Contoured carbon fiber plate List of Figures (Cont)	65

Figure No.	Title	Page
Fig. (23):	X-ray of ilizarov exteral fixator used in treatemnt of type C fracture	68
Fig. (24):	Distal locking long-stem cementless (Reef hip prothesis)	72
Fig. (25):	Long stem Huckstep prosthesis	72
Fig. (26):	Algorithm for management of femoral periporosthetic fractures	74
Fig. (27):	Acetabular rings	78
Fig. (28):	Algorithm for treatment of intra- operative acetabular periprosthetic fractures	79
Fig. (29):	Algorithm used for treatment of postoperative periprosthetic acetabular fracture	80
Fig. (30):	Age of patients	83
Fig. (31):	Sex of the patients	84
Fig. (32):	Side of the fracture	85
Fig. (33):	Timing of fracture List of Figures (Cont)	86

Figure No.	Title	Page
Fig. (34):	Type of primary prosthesis	88
Fig. (35):	Primary femoral component	89
Fig. (36):	Percentage of femoral fracture during revision surgery	91
Fig. (37):	Percentage of femoral fracture during primary surgery	92
Fig. (38):	Mennen plate used in treatemnt of Vancouver type B2 postopertive periprosthetic femoral fracture (A, B, C, D)	104
Fig. (39):	Reef hip prothesis and captive cup used in treatemnt of Vancouver type B2 postoperative periprosthetic femoral fracture (A, B, C, D)	107
Fig. (40):	Dell Mayer cable system used in treatemnt of Vancouver type B2 fracture around stable Thompson prosthesis (A, B, C)	108

List of Figures (Cont..)

Figure No.	Title	Page
Fig. (41):	Long stem cementeless prosthesis used in treatment of Vancouver type B1 fracture (A, B)	110
Fig. (42):	Long stem cemented prosthesis used in treatment of Vancouver type B2 fracture (A, B, C, D)	114
Fig. (43):	Reef hip prosthesis used in treatmnt of Vancouver type B2 fracture (A, B, C, D, E)	115
Fig. (44):	Long stem unlocked cementless prosthesis used in treatment of Vancouver type B2 fracture (A, B)	116
Fig. (45):	Retrograde supracondyloar nail used in treatemnt of Vancouver type C fracture (A-G)	118
Fig. (46):	Single cercalg wiring used in treatement of Vancouver type A2 fracture (A, B, C)	119

List of Figures (Cont..)

Figure No.	Title	Page
Fig. (47):	Multiple cerclage wiring used in treatment of Vancouver type B2 fracture (A, B, C, D)	120
Fig. (48):	Single crealge wiring used in treatmnet of Vancouver type A2 fracture (A, B, C)	121
Fig. (49):	Broad dynamic compression plate used in treatment of Vancouvert type C fracture (A, B, C)	123
Fig. (50):	Periprosthetic acetabular fracture typ A treated by screw augmentation through the cup (A, B)	124
Fig. (51):	Harris Hip Scoring System	129

List Of Abbreviations

1ry Primary

Ap Anteroposterior

BW Body weight

CT Computerized tomography

DCP Dynamic compression plate

HHS Harris his score

IV Intravenous

J&J Johnson & Johnson

LCP Locking compression plate

LISS Less invasive stabilization system

MRI Magnetic resonance imaging

N-C Normal to crack

N-N Normal to neck

ROM Range of motion

SGs Strut grafts

STIR Short T_1 inversion recovery

Tc99 Technetium99

THA Total hip arthroplasty

THR Total hip replacement

WBC White blood cells

NTRODUCTION

Periprosthetic fracture is a serious complications of total hip arthroplasty that can be difficult to treat and can be potentially fraught with complication⁽¹⁾.

Several categories of fracture can occur in association with hip arthroplasty. These include intraoperative fractures, intraoperative perforation of the femoral shaft, postoperative fracture of the proximal femur, traumatic and stress fractures of the femur and pelvis. As with most complications of hip arthroplasty, it is easier to prevent them than to treat sequelae⁽²⁾.

Intraoperative fractures commonly involve simple vertical splits that may occur during insertion of uncemented implants, or they may occur around the stem. The later commonly occur during revision surgery⁽³⁾.

The fracture that occur at the tip of the stem during surgery may be missed. The postoperative fractures are generally the result of an injury and are usually easy to diagnose because of pain and deformity of the thigh⁽⁴⁾.

Minor acetabular fractures probably occur more often than is recognized and the initial stability of the implant is not compromised⁽⁵⁾.

Many classifications can describe the pattern of the fracture and stability of the prosthesis. The most utilized classifications are Johansson and Vancouver classification⁽⁶⁾.

Periprosthetic fractures treatment is based on the site of fractures; implant stability and bone $stock^{(1)}$.