The Gene Expression Level of Transforming Growth Factor-beta (TGFbeta) and Significance of Survivin in Hepatocellular Carcinoma

Submitted by Ahmed Fathi Soliman Mohamed

(M.Sc. in Biochemistry, 2007)

For the Fulfillment of the Degree of Doctor of Philosophy in Biochemistry

Under Supervision of

Prof. Dr. Abdel Halim A. Mostafa

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Amany A. Ibrahim

Professor of Gastroenterology & Hepatology Faculty of Medicine Ain Shams University

Prof. Dr. Sanaa M. Kamal

Professor of Gastroenterology & Hepatology Faculty of Medicine Ain Shams University

Dr. Mahmoud M. Said

Lecturer of Biochemistry Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2013

صدق الله العظيم البقرة -الآية 32

Ain Shams University Faculty of Science

Name : Ahmed Fathi Soliman Mohamed

Scientific Degree : M.Sc. in Biochemistry

Department : Biochemistry

: Science **Faculty**

University : Ain Shams

Graduation Year : 2002

I declare that this thesis has been composed by myself and the work herein has not been submitted for a degree at this or any other university.

Ahmed Fathi Soliman

I dedicate this work to my mother's soul, my father and my family. I have to thank them for supporting me with kindness and patience.

Ahmed Fathi Soliman

Acknowledgment

First and foremost thanks to "Allah", the most Merciful for guiding me through and giving me the strength to complete this work the way it is.

I would like to express my deep thanks and supreme gratitude to Professor Dr. Abdel-Halim A. Mostafa, Professor of Biochemistry, Faculty of Science, Ain Shams University not only for giving me the chance to work under his supervision, but also for the great scientific help and continuous guidance which lead to emergence of this work in its current form.

I do feel greatly indebted to **Professor Dr. Sanaa M. Kamal**, Professor of Gastroenterology and Hepatology,
Faculty of Medicine, Ain Shams University for suggesting
the point, designing the work, her close supervision and
valuable instructions throughout this thesis.

I would like to express my thanks to **Professor Dr.** Amany A. Ibrahim, Professor of Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University for her support throughout this work.

I am also deeply grateful to **Dr. Mahmoud M. Said**, Lecturer of Biochemistry, Faculty of Science, Ain Shams University for his skillful help, excellent finishing of the work and discussion during all stages of the research and preparation of the thesis.

Last, my deep appreciation to Chairman, Professors and Colleagues of the Biochemistry Department, Faculty of Science, Ain Shams University, Professors and Physicians of Gastroenterology and Hepatology, Ain Shams Hospitals, for their support and encouragement.

Ahmed F. Soliman

The Gene Expression Level of Transforming Growth Factor-beta (TGF-beta) and Significance of Survivin in Hepatocellular Carcinoma

Ahmed F. Soliman Faculty of Science, Ain Shams University

Abstract

Background and objective: Transforming growth factor-β1 (TGF-β1) plays an important role in the regulation of cell growth and differentiation, angiogenesis, extracellular matrix formation, immunosuppression and cancer development. Survivin was shown to inhibit apoptosis and accelerate cancer cell proliferation as well. In this study, investigation included the levels of circulating TGF-β1 and hepatic TGF-β1 mRNA expression, and their diagnostic value for hepatocellular carcinoma (HCC). Also expression of survivin protein was investigated which may be of a diagnostic significance and therapeutic relevance in HCC.

Patients and methods: A total of 50 individuals were enrolled, which included 24 patients with primary HCC, 21 with chronic hepatitis C virus (HCV) infection, as well as 5 healthy subjects.

TGF- β 1 gene expression level of tumors and of non-cancerous livers was analyzed by real-time reverse transcriptase polymerase chain reaction (RT-PCR), while serum TGF- β 1 and AFP were assessed by enzyme linked immune-sorbent assay (ELISA). Also the expression of survivin protein was detected by immunohistochemistry and the percentage of apoptotic cells (apoptotic index; AI) was evaluated with TUNEL assay.

Results: The patients with HCC had significantly higher hepatic TGF- β 1 gene expression levels (87.55 \pm 15.22; mean \pm SE) than HCV patients (22.7 \pm 4.21) (p<0.001), also serum TGF- β 1 was significantly increased in

HCC patients (16.93 ± 0.90 ng/ml) as compared to HCV patients (13.67 ± 0.81 ng/ml) (p<0.05). Survivin expression and TUNEL labeling index (LI) for apoptotic cells were significantly higher in HCC than in HCV livers (p<0.05 and p<0.001, respectively).

The sensitivity, specificity, positive and negative predictive values of hepatic TGF- β 1 gene expression was 91.7, 76.2, 81.5, and 88.9%, respectively, while the values for serum TGF- β 1 were 75, 61.9, 69.23, and 68.42%, respectively. Combining hepatic TGF- β 1 gene expression and either serum TGF- β 1 or serum AFP raised the sensitivity to 95.8%. Also, combining serum TGF- β 1 and serum AFP raised the specificity to 95.2%. In HCV patients, a positive correlation between serum AFP level and hepatic survivin protein expression was recorded. Also, hepatic TGF- β 1 gene expression level was correlated positively with serum TGF- β 1 level. In HCC patients, survivin protein expression was correlated negatively with TUNEL LI. On the other hand, serum AFP level was correlated positively with HCC grade and stage.

Conclusion: The over-expression of TGF- $\beta1$ gene and its downstream protein level could lead to enhanced tumor cell proliferation. Also TGF- $\beta1$ serum concentration may help early diagnosis of HCC. Concerning survivin, it may be a useful diagnostic marker of cancer and a potential target for cancer treatment.

Contents

	Page
List of tables	i
List of figures	iii
List of abbreviations	Vi
Introduction	Xi
Aim of the work	Xiii
I. Review of Literature	
Hepatocellular carcinoma	. 1
• Epidemiology	2
• Risk factors	
A. Viral hepatitis	. 5
➤ Hepatitis B virus (HBV)	
➤ Hepatitis C virus (HCV)	10
B. Diabetes mellitus	
C. Aflatoxin B1	
D. Pesticides	17
• Diagnosis of HCC	18
HCC specific biomarkers	
➤ Alpha feto-protein	
Des-γ-Carboxyprothrombin	22
> α-L-Fucosidase	22
> γ-Glutamyl transferase	23

➤ Glypican-3	23
> Squamous cell carcinoma antigen	24
• Radiological techniques for HCC diagnosis	25
• Transforming growth factor beta	27
• Activation of transforming growth factor-β	29
 Structure and activation of TGF-β 	
receptors (TβRs)	31
• Intracellular signaling of TGF-β	. 34
• TGF-β induced growth arrest	36
• TGF-β induced apoptosis	38
• TGF-β and cancer	41
Alterations of TGF-β signalling pathways	
contribute to tumor risk	41
> TGF-β1 as a pro-angiogenic factor	43
\triangleright Role of TGF- β in tumor-media	ted
immunosuppression	44
• Survivin	45
 Molecular organization and structure 	
of survivin	46
• Role of survivin in cell division	49
• Role of survivin in apoptosis	51
• Role of survivin in cancer	53
II. Subjects and Methods	
\boldsymbol{J}	56
1	58
II.2. Methods.	59
II.2.1. Determination of Serum Alpha-Feto Protein	
Enzyme Linked Immunosorbent Assay	
II.2.2. Determination of Serum Transforming Grov	
Factor-β1 by Enzyme Linked Immunosorb	
Assay	62
II.2.3. Determination of Transforming Growth Factor	-p1

Relative Gene Expression Level by Real Time
Polymerase Chain Reaction 67
A- RNA Extraction 68
B- Reverse Transcription of RNA 74
C- Quantitative real time polymerase chain reaction
(qRt-PCR) for TGF-β1 77
II.2.4. Determination of Survivin Protein Expression by
Immunohistochemistry 86
II.2.5. Terminal Deoxyuridine Triphosphate Nick-End
Labeling (TUNEL) for the Detection of Apoptotic
Cells 91
• Statistical analysis
III. Results
IV. Discussion
V. Summary
References 146
Appendix
Arabic Summary
Arabic Abstract

List of Tables

Table No.	Subject	Page
1.1	Diagnostic value of AFP as a HCC biomarker	20
3.1	Clinicopathological data for HCC patients	97
3.2	Individual data of serum α -feto protein (AFP) and transforming growth factor- β 1 (TGF- β 1) levels, hepatic TGF- β 1 relative gene expression, surviving expression as well as TUNEL labeling index in HCV patients	98
3.3	Individual data of serum α -feto protein (AFP) and transforming growth factor- β 1 (TGF- β 1) levels, hepatic TGF- β 1 relative gene expression, survivin expression as well as TUNEL labeling index in HCC patients	99
3.4	Serum α -feto protein (AFP) and transforming growth factor- β 1 (TGF- β 1) levels, hepatic TGF- β 1 relative gene expression and TUNEL labeling index in HCV and HCC patients	100
3.5	Survivin expression in liver sections of HCV and HCC patients	105
3.6	Localization of intracellular survivin expression in HCV and HCC patients	106
3.7	Diagnostic value of markers to distinguish between HCV and HCC	116
3.8	Crosstabulation showing the reliability of markers in differentiating between HCV and HCC	116
3.9	Combinational ROC analysis of hepatic TGF-β1 relative gene expression, serum TGF-β1 and serum AFP	118
3.10	Crosstabulation showing the reliability of calculated markers in differentiating between HCV and HCC	118

List of Tables (Cont.)

Table No.	Subject	Page
3.11	Relationship of survivin expression with hepatic TGF- β 1 relative gene expression, serum TGF- β 1 and serum AFP in HCC patients	120
I	Individual data of gender, age, complete blood picture and plasma prothrombin time (PT) in HCV patients	175
II	Individual data of gender, age, complete blood picture and plasma prothrombin time (PT) in HCC patients	176
III	Complete blood picture and plasma prothrombin time (PT) in HCV and HCC patients	177
IV	Individual data of hepatic marker parameters level and vireamia load in HCV patients	178
V	Individual data of hepatic marker parameters level, vireamia load and clinicopathological data in HCC patients	179
VI	Levels of hepatic marker parameters and vireamia load in HCV and HCC patients	180
VII	Individual data of gender, age and complete blood picture in controls	181
VIII	Individual data of hepatic marker parameters level and vireamia load in controls	181
IX	Individual data of serum α -feto protein (AFP) and transforming growth factor- β 1 (TGF- β 1) levels, hepatic TGF- β 1 relative gene expression and TUNEL labeling index in controls	181

List of Figures

Fig. No	Title	Page
1.1	Mechanism of hepatitis B virus-associated hepatocarcinogenesis	8
1.2	Schematic organisation of the hepatitis B virus genome	9
1.3	Evolution from HCV infection to HCC	11
1.4	Hepatitis C virus (HCV) genome including the long open reading frame encoding structural and non-structural genes, and 5' and 3' non coding regions	12
1.5	Possible multiple roles of TGF-β in tumor pathogenesis	28
1.6	Latent TGF- β complexes	30
1.7	Activation of latent TGF-β	31
1.8	Activation of TβRs	33
1.9	TGF-β signal transduction	33
1.10	TGF-β signalling pathways	35
1.11	TGF-β can induce a G1 cell-cycle arrest	37
1.12	TGF-β can trigger programmed cell death	40
1.13	The TGF-β1 signalling pathway and its alterations in human cancer	42
1.14	Schematic diagram of domain structure in representative IAP proteins	46
1.15	Ribbon diagrams of the survivin monomer and survivin dimer	47
1.16	Function of survivin in mitosis	50
1.17	Function of survivin as inhibitor of apoptosis	52
2.1	Calibration curve for serum AFP	62
2.2	Calibration curve for serum TGF-β1	67
2.3	Polymerization and probe annealing.	78
2.4	Strand displacement, cleavage and completion of polymerization	79
2.5	Amplification plots of TGF-β1 and GAPDH in different tissue samples	85
3.1	Box-plots of serum AFP level in HCV and HCC patients	102