

Structural macular evaluation by optical coherence tomography after vitrectomy for diabetic fibrovascular proliferation

Thesis

Submitted for partial fulfillment of M.D. Degree in **Ophthalmology**

 $\mathbf{B}\mathbf{y}$

Ahmed Mohamed Ahmed Hassan Habib

M.B.,B.CH.,M.SC., Ophthalmology Faculty of Medicine – Ain Shams University

Supervised by

Prof. Dr. Ahmed Ibrahim Abou El Naga

Professor of Ophthalmology Faculty of Medicine – Ain Shams University

Prof. Dr. Khaled Abdel Wahab EL Tagoory

Professor of Ophthalmology Faculty of Medicine – Ain Shams University

Asst. Prof. Dr. Mohamed Abdel Hakim Zaki

Assistant Professor of Ophthalmology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2012

Acknowledgment

First I would like to thank Allah Almighty for granting me the power to proceed and to accomplish this work.

I would like to thank **Prof. Dr. Ahmed Abou El Naga** and **Prof. Dr. Khaled El Tagoory**, Professors of Ophthalmology, Ain Shams University, for their help, support and encouragement.

I would also like to thank **Dr. Mohamed Zaki AbdelHakim**, Assistant Professor of Ophthalmology, Ain Shams University, for his help and supervision that were essential for this work to be achieved.

Special thanks goes to my mentors Dr. Hisham Hassan, Dr. Ihab AbdelAziz and Dr. Mohamed Nowara who taught me, and still are, about the vitreoretinal subspeciality from a viewpoint that I haven't experienced anywhere else. I honestly don't know where I would be without them.

And last but not least, I would like to thank my family and my sweet wife for helping me in this work as if it was their own.

Ahmed Habib

تقييم بنيان المقولة بجهاز الراسم المقطعي الضوئي المترابط بعد عملية استئصال الجسم الزجاجي لعلاج تليفات الشبكية الدموية الناتجة عن مرض السكر

رسالة مقدمة توطئة للحصول على درجة الدكتوراه في طب وجراحة العيون

مقدمة من الطبيب

أحمد محمد أحمد حسن حبيب بكالوريوس الطب والجراحة ماجستير طب وجراحة عيون كلية الطب – جامعة عين شمس

تحت إشراف

أ.د./ أحمد إبر اهيم أبو النجا أستاذ طب وجراحة عيون كلية الطب جامعة عين شمس

أ.د./ خالد عبد الوهاب التاجوري أستاذ طب وجراحة عيون كلية الطب جامعة عين شمس

د./ محمد عبد الحكيم زكي أستاذ مساعد طب وجراحة عيون كلية الطب جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس 2012

LIST OF CONTENTS

Page	ì
List of Tablesii	
List of Figuresiii	
List of Chartsv	
List of Abbreviationsvi	
Introduction1	
Aim of the work3	
Review of Literature4	
Anatomy of the macula4	
Diabetic retinopathy9	
Macular edema25	
Optical Coherence Tomography34	
Vitrectomy for diabetic fibrovascular proliferation 48	
Patients and Methods63	
Results66	
Discussion85	
Summary99	
Conclusion101	1
Recommendations	3
References104	4
Arabic summary	

LIST OF TABLES

Table	Title Page	
no.	no.	
1	Epiretinal membrane vs foveal contour loss68	
2	Epiretinal membrane vs tamponade type69	
3	Epiretinal membrane vs subretinal fluid	
4	Epiretinal membrane vs intraretinal oedema70	
5	Epiretinal membrane vs cystoid macular oedema70	
6	Foveal contour loss vs cystoid macular oedema71	
7	Foveal contour loss vs intraretinal edema71	
8	Foveal contour loss and subretinal fluid	
9	Foveal contour loss vs tamponade type72	
10	Subretinal fluid vs the type of tamponade used73	
11	Intraretinal edema vs the type of tamponade used73	
12	Cystoid macular edema vs the type of tamponade used74	
13	Cystoid macular edema vs subretinal fluid74	
14	Mean age between 2 groups	
15	Mean Pre-op BCVA between 2 groups	
16	Mean IOP between 2 groups	
17	Mean post-op BCVA between 2 groups	
18	Mean CFT between 2 groups	
19	Sex distribution in group 1 & 2	
20	Comparison between pre-op and post-op BCVA	
	(Log.MAR) in each study group	
21	Macular attachment status in each group preoperative80	
22	Macular structural changes in each group postoperative81	
23	Correlation table in G1: using Pearson's correlation	
	coefficient82	
24	Correlation table in G2: using Pearson's correlation	
	coefficient84	

LIST OF FIGURES

Fig.	Pag	
no.	Title	no.
1	Clinical posterior pole	4
2	Foveal avascular zone	5
3	Cross section of the fovea	6
4	Optical coherence tomography of the macula	7
5	Microanneurysms: most evident in fluorescein anigiogram as opposed to colour picture	
6	Intra Retinal Microvascular Abnormalities (IRMA)	14
7	Neovascularization	16
8	Fibrovascular proliferation	19
9	Advanced diabetic retinopathy: burnt-out stage	19
10	Tractional retinal detachment	23
11	OCT optical basis	35
12	Retinal (spongy) edema	38
13	Cystoid edema	39
14	Serous (subretinal) fluid/detachment	39
15	Large Cyst with impending lamellar hole	41
16	Lamellar hole after rupture of large cyst	41
17	pre-retinal membranes with CME	42
18	pre-retinal membranes with tractional macular detachment	t 43
19	Partial PVD with anteroposterior traction	44
20	Anterposterior traction & tangiential traction	45
21	Intraretinal edema	46
22	Intraretinal edema (Patient's picture)	87
23	Intraretinal cysts (Patient's picture)	88
24	Small pocket of subretinal fluid (Patient's picture)	89

Fig.	Title	Page no.
25	Massive subretinal fluid (Patient's picture)	89
26	Epiretinal membrane (Patient's picture)	91
27	Lost foveal depression with wrinkeled surface. (Patient's picture)	93
28	Lost foveal contour with smooth surface (Patient's picture	93

LIST OF CHARTS

Chart no.	Title	Page no.
1	3 months post-operative macular structural abnormalities	68
2	comparison between the 2 study groups regarding mean ag	e . 75
3	comparison between preop and postop mean BCVA in the study groups	77
4	Sex distribution in group 1 and 2	···· 78
5	Preoperative structural macular changes in group 1 & 2	80
6	Comparison between the study groups regarding post-op structural changes	81

LIST OF ABBREVIATIONS

AGEs	Advanced glycation endproducts
AHFP	Anterior hyaloidal fibrovascular proliferation
ANOVA	Analysis of Variance
BCVA	Best Corrected Visual Acuity
CAMs	Cell adhesion molecules
CFT	Central Foveal Thickness
DME	Diabetic macular edema
DR	Diabetic retinopathy
DRCRn	Diabetic Retinopathy Clinical Research Network
DRVS	Diabetic Retinopathy Vitrectomy Study
ECM	Extracellular matrix
ELM	External limiting membrane
ERG	Electro RetinoGram
ERM	Epiretinal membrane
ETDRS	Early Treatment Diabetic Retinopathy Study
FAZ	Foveal avascular zone
FVP	Fibrovascularproliferation
G1	Group 1
G2	Group 2
ICAM	Intracellular adhesion molecule
ICAM-1	Intercellular adhesion molecule 1
INL	Inner nuclear layer
IOP	Intra Ocular Pressure
IPL	Inner plexiform layer
IRMA	Intraretinal microvascular abnormalities
LAM	Leucocyte adhesion molecule
NFL	Nerve fibers layer
NPDR	Nonproliferative diabetic retinopathy
NV	Neovascular
NVD	Neovascularization of the optic disc
OCT	Optical coherence tomography

ONL	Outer nuclear layer
OPL	Outer plexiform layer
P Value	Probability
PAF	Platelet-activating factor
PDR	Proliferative diabetic retinopathy
PKC	Protein kinase C
PKC-beta	Protein kinase C-beta
PVD	Posterior Vitreous Detachment
r	Pearson's correlation coefficient
RPE	Retinal pigmented epithelium
SD	Standard deviation
SFP	Stereo fundus photographs
TDME	Tractional diabetic macular edema
tPA	Tissue plasminogen activator
VCAM	Vascular cell adhesion molecule
VCAM-1	Vascular cell adhesion molecule-1
VE-cadherin	Vascular endothelial cadherin
VEGF	Vascular endothelial growth factor
VVOs	Vesiculo vacuolar organelles
ZO-1	Zonula occludin-1

INTRODUCTION

Diabetic retinopathy is one of the leading causes of blindness in the world. It classically has been regarded as a disease of the microvasculature of the retina, and the natural history of the disease has been divided into an early non-proliferative stage and a later proliferative stage. (1)

Proliferative retinopathy is defined as any new vessels, fibrous proliferations, preretinal hemorrhage, vitreous hemorrhage or fibrous proliferations ⁽¹⁾. Diabetic maculopathy in fibro vascular proliferation (FVP) is unique for its strong vitreoretinal adhesion ⁽²⁾, the frequent presence of epiretinal membrane (ERM) and the strong pro-inflammatory and pro-angiogenic environment. ⁽³⁾

Vitrectomy is one of the major treatment methods for FVP⁽⁴⁾. As surgical techniques and instruments improve, high anatomical success may be achieved; however, functional results are less favorable ⁽⁵⁾. Despite attached retina, postoperative visual function may be affected by various macular and disc abnormalities. Among the major changes are the structural alternations of the macula. ⁽⁶⁾

Recently, optical coherence tomography (OCT) can be used to detect, qualify, quantify and document these alterations. Furthermore, OCT is non-invasive, can qualify the changes and can detect subtle abnormalities not evident with other imaging studies. (7)

Although OCT has been used to examine postoperative macular changes in various retinal diseases, its application to study postoperative macular abnormality in diabetic FVP has not been performed prospectively in the past.

AIM OF THE WORK

The goal of the study is to determine the type and frequency of various macular structural abnormalities after Vitrectomy for diabetic FVP such as nature and types of macular thickness change, macular contour changes and epiretinal membrane by using OCT.

ANATOMY OF THE MACULA

The Macula

The macula or the area centralis is the portion of the posterior retina that contains xanthophyll pigment and lies between the upper and lower temporal arcades. It measures approximately 5.5mm in diameter and is centered approximately 4mm temporal to and 0.8mm inferior to the center of the optic disc. It corresponds to approximately 15 degrees of the visual field. (8)

The clinical macula is the central area, measures approximately 1.5mm in diameter within the area centralis. Within the center of the macula lies a depression approximately 0.35mm in diameter surrounded by a ring of slightly thickened tissue. This region is called the foveola by anatomists and the fovea by clinicians. The center of the fovea is called the umbo (figure 1). (9)

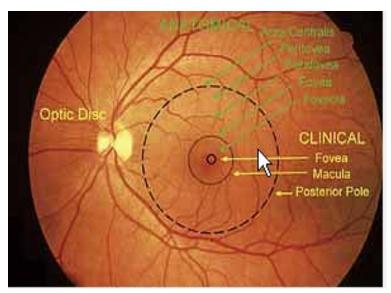


Figure 1: Clinical posterior pole. (9)

The foveal avascular zone (FAZ)

The FAZ is located within the fovea but extends beyond the foveola. The exact diameter is variable and its location can be determined with accuracy only by fluorescein angiography (figure 2)⁽²⁾.

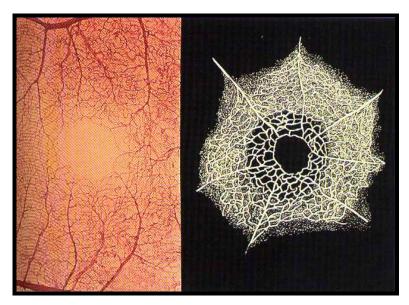


Figure 2: Foveal avascular zone (Courtesy of Wilmer Eye Institute)⁽²⁾

Microscopic anatomy

Gass et al, 1997 (8) described the retina microscopically in cross section as 10 layers as following:

- 1- Retinal pigmented epithelium (RPE).
- 2- Photoreceptors layer of rods and cones.
- 3- External limiting membrane (ELM).
- 4- Outer nuclear layer (ONL).
- 5- Outer plexiform layer (OPL).
- 6- Inner nuclear layer (INL).
- 7- Inner plexiform layer (IPL).
- 8- Ganglion cell layer GCL.
- 9- Nerve fibers layer (NFL), internal limiting membrane.