Resistin and its Relation to Inflammation and Insulin Resistance in Morbidly Obese

Thesis

Submitted for the partial fulfillment of Master Degree

In Clinical and Chemical Pathology

BY

Noha Mohamed Abd El- Monem Mohamed

M.B.B.ch Faculty of Medicine - Zagazig University

Supervised by

Professor/ Randa Abd El-Wahab Reda Mabrouk

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Doctor/Nesrine Aly Mohamed Omar

Lecturer of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2013

Acknowledgement

First of all thanks to Allah who helped me to do this work.

I would like to express my sincere appreciation and gratitude to **Prof. Dr. Randa**Abd El-Wahab Reda Mabrouk Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her generous supervision and kind guidance to make the realization of this work much easy.

I am deeply grateful to **Dr. Nesrine Aly Mohamed Omar,** Lecturer of Clinical and
Chemical Pathology, Faculty of Medicine, Ain
Shams University for her guidance and
supervision.

CONTENTS

-LIST OF TABLES
-LIST OF FIGURESII
-LIST OF ABBREVIATIONSII
-INTRODUCTION AND AIM OF WORK1
-REVIEW OF LITERATURE
I-OBESITY5
II- NORMAL METABOLIC HOMEOSTASIS3
III- RESISTIN AND METABOLIC SYNDROME42
-PATIENTS AND METHODS65
-RESULTS75
-DISCUSSION85
-SUMMARY AND CONCLUSION91
-REFERENCES95
-ARABIC SUMMARY

LIST OF TABLES

Table	Title	Page
Table (1)	Classification of adult obesity.	6
Table (2)	Criteria for Diagnosis of the Metabolic	13
	Syndrome.	
Table (3)	Comparison between cases and controls as	77
	regards general data.	
Table (4)	Comparison between cases and controls as	78
	regards anthropometric data.	
Table (5)	Comparison between cases and controls as	79
	regards laboratory data.	
Table (6)	Comparison between cases and controls as	80
	regards resistin & hs-CRP.	
Table (7)	Correlations between resistin and hs-CRP,	81
	HOMA, insulin, FBS, BMI and lipid profile	
	(IN OBESE DIABETIC).	
Table (8)	Correlations between hs-CRP and resistin,	82
	HOMA, insulin, FBS, BMI and lipid profile	
	(IN OBESE DIABETIC).	

I

Table (9) Correlations between resistin and hs-CRP, 82HOMA, insulin, FBS, BMI and lipid profile (IN OBESE NON DIABETIC).

LIST OF Figures

Figure	Title	Page
Figure (1)	obesity and insulin resistance	16
Figure (2)	Insulin resistance in the development	38
	of the metabolic syndrome.	
Figure (3)	Structure of resistin.	44
Figure (4)	the role of SOCS3 in insulin resistance	54
Figure (5)	the role of PTEN in the development of	56
	insulin resistance in metabolic syndrome	
Figure (6)	Illustrated model of adipokine-	62
	endothelial cell interaction.	
Figure (7)	Mean and SD of cases and controls As	83
	regards resistin & hs-CRP.	
Figure (8)	Positive correlation between serum	
	resistin and HOMA-IR in obese	
	diabetic.	

LIST OF ABBREVIATION

ADSF Adipocyte-secreted factor

AgRP Agouti-related protein

Akt A family of sereine proteases

AMPK AMP-activated protein kinase

apoB apolipoprotein B

AT Adipose tissue

ATF-2 Activating transcriptional factor 2

ATP adenosine triphosphate

BMI Body mass index

CCR5 C-C chemokine receptor type 5

CKK Cholecystokinin

CRP C reactive protein

CTLA-4 Cytotoxic T-Lymphocyte Antigen 4

DCs Dendertic cells

EDHF Endothelium-derived hyperpolarizing factor

eNOS Endothelial Nitric oxide synthase

ER Endoplasmic reticulum

ET-1 Endothelin-1

FBG Fasting blood glucose

FFAs free fatty acids

FIZZ3 Found in inflammatory zone 3

FOXO1 Forkhead box protein O1

FoxP3 Forkhead box protein 3

G-6-Pase Glucose-6-phosphatase

GH Growth hormone

GIP Gastric inhibitory peptide

GLP-1 Glucagon like peptide-1

List of abbreviations

GLUT4 Glucose transporter

HDL High density lipoprotein

HGF Hepatocyte growth factor

HIF-1 Hypoxia-inducible factor-1

HOMA-IR Homeostatic model assesment of insulin resistance

ICAM-1 Intracellular adhesion molecule-1

IDF International Diabetes Federation

IFG Impaired fasting glucose

IFN-γ Interferon-γ

IGT Impaired glucose tolerance

IKK Kinase inhibitor of NF-Kb

IL-12 Interleukin 12

IL-15R α Interleukin 15 receptor alpha

IL-1RA Interleukin 1 receptor antagonist

IL-6 Interleukin 6

IR Insulin resistance

IRF1 Interferon regulatory factor 1

IRS-1 Insulin receptor substrate-1

JNK c-Jun NH2-terminal kinase

KATP ATP- sensitive potassium channels

KDa Kilo-Dalton

LDL Low density lipoprotein

LIF Leukemia inhibitor factor

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

MCP-1 Monocyte chemo-attractant protein-1

MIF Macrophage migration inhibitory factor

MMP Matrix metalloproteas

List of abbreviations

MS Metabolic syndrome

NCEP National Cholesterol Education Program

NEFAS Non-esterified fatty acids

NF-κβ Nuclear factor kappa beta

NHLBI National Heart, Lung, and Blood Institute

NK cells Natural killer cells

NO Nitric oxide

NPY Neuropeptide Y

ob /ob Mouse lacks the functional form of leptin

Obese gene Obese gene

OHS Obesity hypoventilation syndrome

OSA Ostructive sleep apnea

PAI-1 Plasminogen activator inhibitor type 1

PBMC Peripheral blood mononuclear cells

PEPCK phosphoenolypyruvate carboxykinase

PI3K Phosphatidylinositol triphosphate kinase

PKC-θ Protein kinase $C-\theta$

POMC Pro-opiomelanocortin

PPARγ Peroxisome proliferator activated receptor gamma

PTEN Phosphatase and Tensin Homolog Deleted on Chromosome Ten

PTX3 Pentraxin 3

PYY Peptide YY

RELMs Resistin like molecules

RETN gene coding for resistin

ROS Reactive oxygen species

SIRS Systematic inflammatory response syndrome

SNPs Single-nucleotide polymorphisms

SOCS-3 Suppressor of cytokine signaling-3

List of abbreviations

T2DM Type 2 diabetes mellitus

TG Triglycerids

TGF-β Transforming growth factor-beta

TNF-α Tumour necrosis factor alpha

TRAF-3 TNF-receptor-associated factor-3

TZDS Thiazolidinedions

VCAM-1 Vascular wall adhesion molecule-1

VEGF Vascular endothelial growth factor

VLDL Very low density lipoproteins

WC waist circumference

WHR waist-to-hip ratio

α-MSH α-melanocyte stimulating hormone

INTRODUCTION

Most attention in recent years has been devoted to the concept that obesity elicits a chronic low-grade systemic inflammatory response that results from a combination of increased insulin resistance and an increased production of inflammatory mediators by the expanding pool of adipocytes (**Rensen et al., 2009**).

Several research studies in different population indicate that inflammation may be the link between obesity and insulin resistance (**Doumatey et al., 2010**).

Obesity is a common risk factor for dyslipidemia, insulin resistance, type 2 diabetes, hypertension and atherosclerosis, a cluster of metabolic abnormalities included in metabolic syndrome (**Grunfy et al., 2004**).

Numerous evidences suggest that fat tissue is viewed as an active endocrine organ with high metabolic activity (**Kershaw et al., 2004**). Adipocytes produce and release several bioactive substances that act as true hormones responsible for the regulation of energy intake and expenditure (**Mora et al., 2002**). The dysregulation in the production of these hormones, called adipocytokines, can contribute to the proinflammatory environment

associated with obesity (Vendrell et al., 2004).

Following the observation that serum concentration of the number of inflammatory markers including CRP, TNF-a, and interleukin 6 are elevated in over weight and obese individuals, obesity is now viewed as a low grade inflammatory disease (Fantuzzi, 2005).

Taken these data inconsideration one could argue for a role of the adipose tissue as a new member of the innate immune system (Anderson et al., 2007).

Among the proteins synthesized and released from adipose tissue (adiponectin, angiotensin, estradiol, IL-6, leptin and TNF-a) resistin is an adipocyte secreted hormone belonging to a cysteine – rich protein family. It is expressed in white adipose tissues in rodents and has also been found in several other tissues in human. Insulin, glucose, many cytokines and anti-diabetic thiazolidinedione are regulators of resistin gene expression. Resistin was firstly proposed to be involved in insulin resistance and type 2 diabetes mellitus. Recently, it was found to be relevant to inflammation and inflammation related diseases like atherosclerosis and arthritis (Shanshan and Yingying, 2006).

It was found that resistin might link obesity with insulin resistance and diabetes in mice models. However, subsequent studies in rodent models have produced disparate findings on the role of resistin in obesity and insulin resistance (Le Lay et al., 2001).

In humans, while the expression of resistin in human adipocytes is very low compared with that seen in rodents and does not differ between normal, insulin-resistant or type 2 diabetic individuals, a more recent study using a large size of case suggests that the plasma resistin levels are increased in type 2 diabetes (**Engert et al., 2002**). Genetic case-control studies have demonstrated that genetic variations in the resistin gene are associated with insulin resistance and obesity (**Rajala et al., 2003**).

More recently; it has been shown that resistin acts on the liver and antagonizes insulin signaling; thereby increasing gluconeogenesis and hepatic glucose output (Cho et al., 2004).

Therefore determination of the plasma resistin levels may be important for understanding onsets of metabolic diseases such as type 2 diabetes that is considered as a complication of obesity.

AIM OF THE WORK

The aim of the present study is to determine serum concentrations of resistin in morbidly obese patients in comparison to normal weight controls. It is also designed to assess the possible relation of resistin to the high sensitivity CRP as an inflammatory marker and to insulin resistance in morbidly obese.