Contents

Title				
♦ List of Abbreviations	II			
♦ List of Figures	V			
♦ List of Tables	VI			
• Introduction	1			
♦ Aim of the Work	4			
♦ CHAPTERS				
■ Phsiology of respiration	5			
 Pathogensis of Pulmonary Dysfunction After 				
Cardiac Surgery	38			
■ Intraopreative Protective Lung Strategy	55			
■ Postoperative Protective Lung Strategy	80			
♦ Summary	108			
♦ References	110			
Arabic Summary				

List of Abbreviations

AA : Arachidonic Acid

ABG :Arterial Blood Gases

ACP : American College of Physicians

AP : Activating Protein

ARDS : Adult Respiratory Distress Syndrome

ARM :Alveolar Recruitement Manuver

ASA : American Society of Anesthesiologists

BH4 : Tetrahydrobiopterin

BAL :Bronchoalveolar Lavage

C :Complement

CABG : Coronary Artery Bypass Graft

CD :Cluster Of Difference

cGMP : Cyclicguanosinemonophosphate

CNO :ConstitutiveNO

CO : Carbonmonooxide

COPD : Chronic Obstructive Pulmonary Disease

CPB : Cardio-Pulmonary Bypass

CPET :Cardiopulmonary Exercise Test

CRI :Complement Receptor 1

CR : Complement Receptor

DHCA :Deep Hypothermic Circulatory Arrest

DLCO :Diffusion Capacity Of CO₂

EC : Endothelial Cell

ECC : Extra-Corporeal Circulation

eNOS : Endothelial Nitric Oxide

ERV : Expiratory reserve volume

ETCO₂ :End Tidal CO₂

f : Breathing Frequency

FEF: Forced expiratory flow

FEV : Forced expiratory volume

FRC : Functional Residual Capacity

FRC: Functional residual capacity

FVC : Forced vital capacity

HUVEC: Human Umbilical Vein-Derived EC

IC : Inspiratory capacity

ICAM : Intercellular Adhesion Molecule

ICU: Intensive Care Unit

IKB :Inhibitor of KB

IL :Interleukins

IM : Intra-Muscular

IMT : Preoperative Intensive Inspiratory Muscle

INO :INO derived NO

INOS :Nitric Oxide Synthase

IRV : Inspiratory reserve volume

IV : Intra-Venous

LED :Light Emitting Diode

LPS : Lipopolysaccharide

MEP : Maximum Expiratory Pressure

MIP :Maximum Inspiratory Pressure

MUF : Modified Ultrafiltration

NF-KB : Nuclear Factor kb

NO : Nitric Oxide

NOS : Nitric Oxide Synthase

NSAID: Non Steroidal Anti Inflammatory Drugs

NSQIP: National Surgical Quality Improvement Program

OKT3 :Muromonab CD3

Pa : Pulmonary Arterial Pressure

PA : Alveolar Pressure

PAH :Pulmonary Artey Hypertension

PaCO2: Partial Pressure of CO2

PaO₂ : Oxygen Partial Pressure

PAF : Platelet-Activating Factor

P_{alv} : Alveolar Pressure

PCA: Patient Controlled Analgesia

PECAM: Platelet-Endothelial Cell Adhesion Molecule

PEEP : Positive End Expiratory Pressure

PEP : Positive Expiratory Pressure

PEF : Peak expiratory flow

PEFR : Peak Expiratory Flow Rate

PFTs : Pulmonary Function Tests

PLA2 : Phospholipases A2

PMN :Polymorphnuclear Leucocytes

PPC: Postoperative Pulmonary Complications

P_{pl} : Pleural Pressure

P_v : Pulmonary Venous Pressure

Q :Flow

RV : Residual volume

ROS :Reactive Oxygen Species

TENS: Transcutaneous electrical nerve stimulation

TH :T- Helper Cell

TLC : Total lung capacity

TNF: Tumor Necrosis Factor

t-PA :Tissue Plasminogen Activator

V'A : Alveolar Ventilation

 V_A/Q :ventilation perfusion ratio

 $V'CO_2$:CO₂ Production

VO₂ :Oxygen Consumption

VC : Vital capacity

VCAM: Vascular Cell Adhesion Molecule

Vco₂ : Body's Rate Of CO2 Production

V_D : Dead space

 $\mathbf{V}_{\mathbf{E}}$: Minute Ventilation

 $\mathbf{V_t}$: Tidal volume

List of Figures

Fig.	Title	Page No.
1-1	Pressures on both sides of the chest wall.	6
1-2	Relationship between lung volume and transpulmonary pressure.	8
1-3	Lung zones.	10
1-4	Gravity effect on blood flow and ventilation in the alveoli.	15
1-5	Ventilation/perfusion ratios affect capillary blood gas tension.	17
1-6	Ventilation-perfusion ratios within single alveolar-capillary unit.	19
1-7	Alveolar gas composition at different ventilation-perfusion ratios.	22
1-8	Shunts and venous admixture.	25
1-9	Spirometry measures lung volume.	31
2-1	Schematic of the inflammatory process induced by CPB.	43
2-2	Pathways leading to the activation of NF-kB& the production of adhesion molecules.	49
2-3	EC, platelets and leukocytes interaction.	52
4-1	Weaning protocol.	96

List of Tables

Table No.	Title	Page No.
1	Lung volumes	26
2	Risk factors for postoperative pulmonary complications.	84
3	An updated index for respiratory failure.	86

Protective Lung Strategies during Cardiopulmonary Bypass

Essay

Submitted for Fulfillment of Master Degree in Anesthesiology

By

Mona Mohammed Atteya Mousa M.B.B.,Ch

Under Supervision Of

Prof. Dr. Magdy Mohammed Hussein Nafie

Professor of Anesthesiology and Intensive Care Faculty of Medicine – Ain Shams University

Dr. Waleed Hamed Nofal

Lecturer of Anesthesiology and Intensive care Faculty of Medicine – Ain Shams University

Dr. John Nader Nasseef

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

استراتيجيات حماية الرئة خلال استخدام ماكينة القلب الاصطناعية

رسالة توطئة للحصول على درجة الماجستير في التخدير مقدمة من

الطبيبة / منى محمد عطية موسى بكالوريوس الطب والجراحة

تحت إشراف

الأستاذ الدكتور/ مجدى محمد حسين نافع أستاذ التخدير و الرعاية المركزة كلية الطب - جامعة عين شمس

ال كتور/ وليد حامد نوفل مدرس التخدير و الرعاية المركزة كلية الطب - جامعة عين شمس

ال كتور/ جون نادر نصيف مدرس التخدير و الرعاية المركزة كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2013

First of all, thanks to "Allah" Words cannot adequately express my gratitude to those who helped me to complete this work.

I would like to express my sincere thanks and deep gratitude and respect to Prof. Dr. Magdy Nafie for his great support, constructive guidance, meticulous revision and encouragement in performing this work.

I also wish to express my extreme appreciation and gratitude to Dr. Waleed Nofal for his faithful supervision, constant guidance and real interest in the progress of this work.

Many sincere thanks to Dr. John Nader for his kind advice, constant help and support of this work.

Mona Mohammed Atteya Mousa

سورة البقرة الآية: ٣٢

Introduction

Postoperative cardiopulmonary bypass (CPB)dysfunction lung induced remains a serious complication that could lead life-threatening to problems. CPB is associated with a whole-body response. inflammatory The of blood contact components with the artificial surface of the bypass circuit causes activation of complements, upregulation of cytokines and adhesion molecules and induction of oxygen-free radicals. The pathogenic consequences are adhesions of complement-activated neutrophils endothelial cells. neutrophil migration into the extravascular and mediated spaces, free-radical damage. Injured endothelial cells pulmonary vulnerable to the cytokine-mediated inflammatory cascade. Moreover, CPB renders the lung being at risk because lung perfusion insults ischemic maintained solely by the bronchial arterial system (Suzuki, 2010).

Post ischemic reperfusion of the lung up regulates adhesion molecules and enhances neutrophilendothelial cell adhesion and extravascular neutrophil sequestration, thereby aggravating further structural and functional abnormalities of pulmonary endothelial cells. Thus the systemic inflammatory response and ischemia-

reperfusion during CPB constitute a vicious network in the pathogenesis of CPB-derived lung injury (Suzuki, 2010).

Patients without pre-existing lung conditions can develop a wide array of pathologies ranging from diminished functional residual capacity (FRC) to acute lung injury (which may progress to adult respiratory distress syndrome {ARDS} in 12% of cardiac surgical patients). Those with preoperative lung impairment may have similar, but exaggerated effects. An estimated 8% of patients can experience prolonged postoperative mechanical ventilation and 7% required reintubation (Siepe et al., 2008).

By avoiding CPB, reducing its time or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB beneficial effects on lung function are reported (Massoudy et al., 2003).

In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated a better postoperative lung function is observed (De Vroege et al., 2004).

myocardial protection by Meticulous hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the maintance of postoperative lung function. The partial restoration of

Introduction

pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs (Warren et al., 2007). The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function (Huang et al., 2003). In a similar way, reducing the use of cardiotomy suction device it is expected that the postoperative lung function will be improved (Philippou et al., 2000).