

## THE EFFECT OF TRAFFIC COMPOSITION ON EGYPTIAN ROAD SAFETY

A Thesis

Submitted to the Faculty of Engineering - Ain Shams University
in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

in

Civil Engineering

**Public Works** 

Road and Traffic Engineering

Prepared by

## Eng. AMIRA FARID MOHAMMED FODA

B.Sc. in Civil Engineering, June 2008
Faculty of Engineering - Ain Shams University

#### **Supervisors**

#### Prof. Dr. Hassan Abd El-Zaher Hassan Mahdy

Professor of Highway Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

#### **Prof. Dr. Khaled Anwar Kandil**

Professor of Highway Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

#### Dr. Hamdy El-Sayed Ibrahim

Assistant Professor of Highway Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt



# THE EFFECT OF TRAFFIC COMPOSITION ON EGYPTIAN ROAD SAFETY

A Thesis for the Degree of
Master of Science
In Civil Engineering
Public Works
Road and Traffic Engineering

By

#### Eng. AMIRA FARID MOHAMMED FODA

B.Sc. in Civil Engineering, June 2008 Faculty of Engineering - Ain Shams University

### **Thesis Approval**

## **Examiners Committee**

## **Signature**

#### Prof. Dr. Issa Abd- Allah Sarhan

Tenured Professor of Highway and Traffic Engineering. Faculty of Engineering, Ain Shams University

#### Prof. Dr. Abd- Allah Hassan Wahdan

Professor of Transportation Planning and Traffic Engineering. Dean of Faculty of Engineering, El-Azhar University

#### Prof. Dr. Hassan Abd El-Zaher Hassan Mahdy

Professor of Highway Engineering. Faculty of Engineering, Ain Shams University

Date: ..... / ..... / 2013



#### **Faculty of Engineering**

#### **Public Works Department**

## **Curriculum vitae**

Name: Amira Farid Mohammed Foda

Date of Birth: 30/07/1985

Place of Birth: Cairo, Egypt

Nationality: Egyptian

University Degree: B.Sc. in Civil Engineering, June 2008, Faculty of

Engineering, Ain Shams University

Current Job: Transportation Technical Office Group Leader at

Madinaty Project, Alexandria Construction

Company, Talaat Mostafa Group.

**STATEMENT** 

This thesis is submitted to Ain Shams University, Faculty of Engineering for the degree

of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the department of

Public Works, faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other

University or Institution.

The candidate confirms that the work submitted is her own and that appropriate credit

has been given where reference has been made to the work of others.

Date: ..... / 2013

Signature: .....

Name: Amira Farid Mohammed Foda

iv

#### **DEDICATION**

First of all, my full thanks and gratefulness to ALLAH for his continuous blessings, great help, guidance, and support since the start of my life until now, and I pray to him to continue his infinite great generosity until the end of my life.

I have spent years from my life working hard to accomplish this thesis in honorable scientific level as much as possible, and now I wish to dedicate it with my deepest gratefulness to my mother, whom encouraged, helped, and supported me along my life with her continuous love, patience, and optimism.

I wish to dedicate it also to my father's soul with my deepest gratitude and I hope that I have become as he wished.

Finally, I would like to dedicate it to my sister and my brothers with my special thanks and gratitude for their love, encouragement, and valuable help.

#### **ACKNOWLEDGMENTS**

First of all, my full thanks and gratefulness to ALLAH for his continuous blessings, great help, guidance, and support since the start of my life until now, and I pray to him to continue his infinite great generosity until the end of my life.

I would like to express my thanks and gratitude to Professor Dr. Issa Abd- Allah Sarhan at Ain Shams University, Faculty of Engineering and Professor Dr. Abd- Allah Hassan Wahdan at El-Azhar University, Faculty of Engineering for their help, valuable remarks, and support.

I would like to express my deepest thanks and appreciation to my Professor Dr. Osama Hussein Okail at Ain Shams University, Faculty of Engineering for his guidance, support, and valuable choice of my research point.

I would like to express my special thanks and gratefulness to my main supervisor Professor Dr. Hassan Abd El-Zaher Mahdy at Ain Shams University, Faculty of Engineering for his valuable supervision, infinite help, guidance and support.

I would like to express my thanks and gratefulness to my supervisors Professor Dr. Khaled Anwar Kandil, and Dr. Hamdy El-Sayed Ibrahim at Ain Shams University, Faculty of Engineering for their valuable help and support.

I would like to express my thanks and greetings to Traffic Police Department, Egyptian Ministry of Interior for the valuable help during data collection.

I would like to express my thanks and greetings to my director at work Eng. Emad Riad at Talaat Mostafa Group, Alexandria Construction Copmany – Madinaty Project for his valuable help during data collection and allowing my absence from work to complete my thesis and get Master's degree.

#### **ABSTRACT**

In recent years, the annual rising number of traffic accidents is becoming a major problem in Egypt. It makes the situation of road traffic safety more and more severe. So, Egypt is in a great need to find how to control this severe situation and finding the appropriate countermeasures to be taken to improve road traffic safety by preventing or at least by reducing road traffic accidents.

Road traffic accidents result from the disorder of the complex dynamic road traffic system, which consists of people, vehicles, roads and environmental conditions. This study introduces traffic accidents prediction model with respect to vehicles factor, without considering the other three factors of people, roads and environmental conditions.

After collecting traffic data from Traffic Police Department, Ministry of Interior in Egypt, this study carries out quantitative statistical analysis of these data and finally, explores a linear regression between the number of road traffic accidents and the road traffic composition, and another linear regression between the number of road traffic accidents and the accidents vehicles types.

The collected traffic data represents the situation of traffic accidents and traffic composition in Egypt during the period from 2006 to 2010. Quantitative statistical analysis is carried out for finding the correlation between the number of road traffic accidents and the number of licensed vehicles of different types (passenger cars, trucks, buses, motorcycles, etc.). After finding this correlation, some types of vehicles which have a significant correlation with the number of road traffic accidents are chosen for building the linear regression model between the number of road traffic accidents and the traffic composition. Data processing is mostly done by Excel and SPSS.

As a case study, quantitative statistical analysis is carried out for the collected traffic data of Cairo – Suez Highway and Cairo – Alex Desert Highway in Egypt which represents the number of road traffic accidents, the accidents vehicles types, the number of fatalities, and the number of injuries during the period from 2010 to 2011.

The quantitative statistical analysis found the correlation between the number of road traffic accidents and the accidents vehicles types (passenger cars, trucks, buses, motorcycles, etc.). After finding this correlation, some types of accidents vehicles which have a significant correlation with the number of road traffic accidents are chosen for building the linear regression model between the number of road traffic accidents and the accidents vehicles types.

With the same sequence, the quantitative statistical analysis found the correlation between the number of each of fatalities and injuries and the accidents vehicles types (passenger cars, trucks, buses, motorcycles, etc.). After finding this correlation, some types of accidents vehicles which have a significant correlation with the number of each of fatalities and injuries are chosen for building the linear regression model between the number each of fatalities and injuries and the accidents vehicles types. Data processing is mostly done by Excel and SPSS.

According to the found linear regression between the number of road traffic accidents and the traffic composition fro Egyptian roads, the found linear regression between the number of road traffic accidents and the accidents vehicles types, and the found linear regression between the number of each of fatalities and injuries and the accidents vehicles types Cairo – Suez Highway and Cairo – Alex Desert Highway in Egypt, this study will give some advice to the relative administration authorities, which can help for the improvement of the situation of road traffic safety in Egypt.

## TABLE OF CONTENTS

| Cur  | riculum vitaeiii                                   |
|------|----------------------------------------------------|
| Stat | tementiv                                           |
| Ded  | licationv                                          |
| Ack  | <b>cnowledgements</b> vi                           |
| Abs  | tractvii                                           |
|      | ole of Contentsix                                  |
|      | of Figuresxix                                      |
| List | of Tablesxxiv                                      |
| СН   | APTER 1: Introduction                              |
| 1.1  | General1                                           |
| 1.2  | Problem Statement                                  |
| 1.3  | Research Objectives                                |
| 1.4  | Thesis Layout4                                     |
| СН   | APTER 2: Literature Review                         |
| 2.1  | Introduction6                                      |
| 2.2  | The State of Road Safety around the World7         |
|      | 2.2.1 Global Road Traffic Fatalities14             |
| 2.3  | The State of Road Safety in Egypt20                |
|      | 2.3.1 Reasons of Road Traffic accidents in Egypt20 |
|      | 2.3.2 Road Traffic Fatalities in Egypt             |

|     | 2.3.3 | Road Traffic Injuries in Egypt23                                 |
|-----|-------|------------------------------------------------------------------|
|     | 2.    | 3.3.1 Classification of Road Traffic Injuries in Egypt25         |
|     | 2.3.4 | Traffic Legislation in Egypt29                                   |
| 2.4 | Chara | cteristics of Road Traffic Accidents30                           |
|     | 2.4.1 | Distribution of Road Traffic Accidents According to Hierarchy of |
|     |       | Roads30                                                          |
|     | 2.4.2 | Distribution of Road Traffic Accidents According to Traffic      |
|     |       | Mode32                                                           |
|     | 2.4.3 | Comparison between Motorcycle and Non-Motorcycle Road Traffic    |
|     |       | Accidents                                                        |
|     | 2.4.4 | Probability of Contributory Cause for Truck and Non-Truck Road   |
|     |       | Traffic Accidents                                                |
| 2.5 | High  | way Safety Management Process41                                  |
| 2.6 | Road  | Safety Audits42                                                  |
|     | 2.6.1 | Differences between Road Safety Audit and Traditional Safety     |
|     |       | Review44                                                         |
|     | 2.6.2 | Benefits of Road Safety Audit45                                  |
|     | 2.6.3 | Case Study of Road Safety Audit45                                |
| 2.7 | Impro | vement of Traffic Safety Facilities83                            |
|     | 2.7.1 | Traffic Safety Facilities Deficiencies                           |
|     | 2.7.2 | Design of Traffic Safety Facilities Improvement84                |
|     |       | 2.7.2.1 Enrich Shape and Color to Improve Visibility84           |
|     |       | 2.7.2.2 Develop New Materials to Enhance Warning                 |
|     |       | Performance85                                                    |
|     |       | 2.7.2.3 Improve Structure to Optimize the Slowing Effect86       |

|     | 2.7.3  | Importance of Traffic Safety Facilities Design Improvement86       |
|-----|--------|--------------------------------------------------------------------|
| CH  | APTEI  | R 3: Data Collection and Methodology                               |
| 3.1 | Introd | luction87                                                          |
| 3.2 | Collec | cting of Traffic Data87                                            |
|     | 3.2.1  | Traffic Composition Data87                                         |
|     | 3.2.2  | Road Traffic Accidents Data94                                      |
|     |        | 3.2.2.1 Road Traffic Accidents Severity95                          |
| 3.3 | Devel  | oping of Relations between the Road Traffic Accidents and the Road |
|     | Traf   | fic Composition96                                                  |
|     | 3.3.1  | Relation Between Road Traffic Accidents and Licensed Passenger     |
|     |        | Cars97                                                             |
|     | 3.3.2  | Relation Between Road Traffic Accidents and Licensed Trucks.98     |
|     | 3.3.3  | Relation Between Road Traffic Accidents and Licensed Buses99       |
|     | 3.3.4  | Relation Between Road Traffic Accidents and Licensed Taxis and     |
|     |        | Microbuses                                                         |
|     | 3.3.5  | Relation Between Road Traffic Accidents and Licensed               |
|     |        | Motorcycles101                                                     |
|     | 3.3.6  | Relation Between Road Traffic Accidents and Licensed Commercial    |
|     |        | and Temporary Vehicles102                                          |
|     | 3.3.7  | Relation Between Road Traffic Accidents and Licensed Public        |
|     |        | Service Vehicles                                                   |
|     | 3.3.8  | Relation Between Road Traffic Accidents and Licensed Diplomatic    |
|     |        | Vehicles                                                           |
|     | 3.3.9  | Relation Between Road Traffic Accidents and Licensed Heavy         |
|     |        | Equipments105                                                      |
|     | 3.3.10 | Relation Between Road Traffic Accidents and Licensed Agricultural  |
|     |        | TD                                                                 |

| 3.3 | Ado    | pting of Research Methodology                          | 107 |
|-----|--------|--------------------------------------------------------|-----|
| CH  | APTE   | R 4: Analysis and Model Building                       |     |
| 4.1 | Introd | luction                                                | 109 |
| 4.2 | Analy  | rsis of Collected Traffic Data for year 2006           | 109 |
|     | 4.2.1  | Building of Correlation Matrix                         | 109 |
|     |        | 4.2.1.1 Description of Correlation Matrix Coefficients | 114 |
|     |        | 4.2.1.2 Calibrating Correlation Matrix Coefficients    | 115 |
|     |        | 4.2.1.3 Selecting Variables of Significant Correlation | 116 |
|     | 4.2.2  | Building of Linear Regression Model                    | 117 |
|     |        | 4.2.2.1 Description of Linear Regression Model Output  | 120 |
|     |        | 4.2.2.1.1 Description of Model Summary Output          | 120 |
|     |        | 4.2.2.1.2 Description of ANOVA Output                  | 120 |
|     |        | 4.2.2.1.3 Description of Coefficients Output           | 121 |
|     | 4.2.3  | Setting of Linear Regression Model                     | 127 |
| 4.3 | Analy  | rsis of Collected Traffic Data for year 2007           | 128 |
|     | 4.3.1  | Building of Correlation Matrix                         | 128 |
|     |        | 4.3.1.1 Calibrating Correlation Matrix Coefficients    | 133 |
|     |        | 4.3.1.2 Selecting Variables of Significant Correlation | 134 |
|     | 4.3.2  | Building of Linear Regression Model                    | 135 |
|     |        | 4.3.2.1 Description of Coefficients Output             | 138 |
|     | 4.3.3  | Setting of Linear Regression Model                     | 141 |
| 4.4 | Analy  | rsis of Collected Traffic Data for year 2008           | 142 |
|     | 4.4.1  | Building of Correlation Matrix                         | 142 |
|     |        | 4.4.1.1 Calibrating Correlation Matrix Coefficients    | 147 |
|     |        | 4.4.1.2 Selecting Variables of Significant Correlation | 148 |

|     | 4.4.2 Building of Linear Regression Model                                 |
|-----|---------------------------------------------------------------------------|
|     | 4.4.2.1 Description of Coefficients Output152                             |
|     | 4.4.3 Setting of Linear Regression Model                                  |
| 4.5 | Analysis of Collected Traffic Data for year 2009156                       |
|     | 4.5.1 Building of Correlation Matrix156                                   |
|     | 4.5.1.1 Calibrating Correlation Matrix Coefficients161                    |
|     | 4.5.1.2 Selecting Variables of Significant Correlation162                 |
|     | 4.5.2 Building of Linear Regression Model                                 |
|     | 4.5.2.1 Description of Coefficients Output166                             |
|     | 4.5.3 Setting of Linear Regression Model                                  |
| 4.6 | Analysis of Collected Traffic Data for year 2010170                       |
|     | 4.6.1 Building of Correlation Matrix170                                   |
|     | 4.6.1.1 Calibrating Correlation Matrix Coefficients175                    |
|     | 4.6.1.2 Selecting Variables of Significant Correlation176                 |
|     | 4.6.2 Building of Linear Regression Model                                 |
|     | 4.6.2.1 Description of Coefficients Output180                             |
|     | 4.6.3 Setting of Linear Regression Model                                  |
| 4.7 | Setting of Linear Regression Model for the Period (2006 – 2010)184        |
|     | 4.7.1 Calculating of weighted Average Unstandardized Coefficients (B) for |
|     | Licensed Vehicles Types                                                   |
| СН  | APTER 5: Case Study                                                       |
| 5.1 | Introduction                                                              |
| 5.2 | Collecting of Traffic Data193                                             |
| 5.3 | Accidents Vehicles Types                                                  |
| 5.4 | Representing of Collected Traffic Data for Cairo – Suez Highway196        |

| 5.5 | Relations between the Collected Traffic Data for Cairo – Suez Highway                                              |
|-----|--------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                    |
| 5.6 | Analysis of Collected Traffic Data for Cairo – Suez Highway during the                                             |
|     | Period (2010 – 2011)                                                                                               |
|     | 5.6.1 The Effect of the Accidents Vehicles Types on the Number of Road                                             |
|     | Traffic Accidents205                                                                                               |
|     | 5.6.1.1 Building of Correlation Matrix205                                                                          |
|     | 5.6.1.1.1 Calibrating Correlation Matrix Coefficients210                                                           |
|     | 5.6.1.1.2 Selecting Variables of Significant Correlation210                                                        |
|     | 5.6.1.2 Building of Linear Regression Model211                                                                     |
|     | 5.6.1.2.1 Description of Coefficients Output214                                                                    |
|     | 5.6.1.3 Setting of Linear Regression Model216                                                                      |
|     | 5.6.2 The Effect of the Accidents Vehicles Types on the Severity Level of                                          |
|     | the Road Traffic Accidents218                                                                                      |
|     | 5.6.2.1 Finding Linear Regression Model between the Number of Fatalities and the Numbers of Road Traffic Accidents |
|     | 219                                                                                                                |
|     | 5.6.2.1.1 Building of Correlation Matrix220                                                                        |
|     | 5.6.2.1.2 Building of Linear Regression Model221                                                                   |
|     | 5.6.2.1.2.1 Description of Coefficients Output.223                                                                 |
|     | 5.6.2.1.3 Setting of Linear Regression Model224                                                                    |

| 5.6.2.2 | Finding Linear Regression Model between the Number of Injuries and the Numbers of Road Traffic Accidents |
|---------|----------------------------------------------------------------------------------------------------------|
|         | 225                                                                                                      |
|         | 5.6.2.2.1 Building of Correlation Matrix225                                                              |
|         | 5.6.2.2.2 Building of Linear Regression Model226                                                         |
|         | 5.6.2.2.1 Description of Coefficients Output.229                                                         |
|         | 5.6.2.2.3 Setting of Linear Regression Model230                                                          |
| 5.6.2.3 | Finding Linear Regression Model between the Number of Fatalities and the Accidents Vehicles Types231     |
|         | 5.6.2.3.1 Building of Correlation Matrix231                                                              |
|         | 5.6.2.3.1.1 Calibrating Correlation Matrix                                                               |
|         | Coefficients235                                                                                          |
|         | 5.6.2.3.1.2 Selecting Variables of Significant                                                           |
|         | Correlation236                                                                                           |
|         | 5.6.2.3.2 Building of Linear Regression Model237 5.6.2.3.2.1 Description of Coefficients Output.239      |
| 5624    | Finding Linear Regression Model between the Number of                                                    |
| 3.0.2.4 | Injuries and the Accidents Vehicles Types241                                                             |
|         | 5.6.2.4.1 Building of Correlation Matrix241                                                              |
|         | 5.6.2.4.1.1 Calibrating Correlation Matrix                                                               |
|         | Coefficients245                                                                                          |
|         | 5.6.2.4.1.2 Selecting Variables of Significant                                                           |
|         | Correlation246                                                                                           |